Log in

Environmental sensitivity of Au diodes on n-AlGaN

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

With growing interest in AlGaN for ultraviolet detectors and high-power/high-temperature electronic devices, the problem of forming high-quality Schottky contacts to this semiconductor has become increasingly important. It was shown that wet-chemical surface pretreatments affect the as-deposited diode characteristics for Au/n-AlGaN Schottky diodes. However, these diodes improve over the course of days when exposed to air at room temperature, exhibiting reduced leakage currents, enhanced barrier heights, and reduced ideality factors. Exposure to oxygen, with an enhanced effect in the presence of water vapor, is responsible for the environmental aging. The environmental aging was found to occur regardless of the source of AlGaN, surface preparation, and metal deposition technique. It was determined that high asdeposited reverse currents were due to current transport beneath the contact area, rather than across the semiconductor surface. Two findings further suggested that the change in electrical characteristics was due to a phenomenon occurring at the metal/semiconductor interface. First, metal thickness played a key role in the rate of change of the electrical characteristics, with thicker contacts being more impervious to surrounding gas species at room temperature. Second, a metal that readily forms an oxide, Ni, exhibited little environmental aging, while noble metals, such as Au and Pt, showed dramatic effects. Mild anneals revealed that the environmental change was partially reversible, which suggests the passivation of electrically active defects at the metal/semiconductor interface as the cause of the altered diode behavior. Taken together, the data indicate that oxidizing species diffuse through noble metal contacts to the metal/semiconductor interface and passivate electrically active defects, which may be reactivated upon mild anneals in N2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Metzger, Compd. Semicond., 2(3), 29 (1996).

    Google Scholar 

  2. J.C. Carrano, T. Li, P.A. Grudowski, C.J. Eiting, R.D. Dupuis, and J.C. Campbell, J. Appl. Phys. 83, 6148 (1998).

    Article  CAS  Google Scholar 

  3. J.I. Pankove, Mater. Sci. Eng. B 61–62, 305 (1999).

    Article  Google Scholar 

  4. S.J. Pearton, F. Ren, A.P. Zhang, and K.P. Lee, Mater. Sci. Eng. R 30, 55 (2000).

    Article  Google Scholar 

  5. M.R.H. Khan, H. Nakayama, T. Detchprohm, K. Hiramatsu, and N. Sawaki, Solid-State Electron. 41, 287 (1997).

    Article  CAS  Google Scholar 

  6. L.S. Yu, D.J. Qiao, Q.J. **ng, S.S. Lau, K.S. Boutros, and J.M. Redwing, Appl. Phys. Lett. 73, 238 (1998).

    Article  CAS  Google Scholar 

  7. L.S. Yu, Q.J. **ng, D. Qiao, S.S. Lau, K.S. Boutros, and J.M. Redwing, Appl. Phys. Lett. 73, 3917 (1998).

    Article  CAS  Google Scholar 

  8. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, D.W. Greve, M. Skowronski, M. Shin, and J.M. Redwing, MRS Internet J. Nitride Semicond. Res. 3, 37 (1998).

    Google Scholar 

  9. E. Monroy, F. Calle, E. Munoz, F. Onmes, B. Beaumont, P. Gibart, J.A. Munoz, and F. Cusso, MRS Internet J. Nitride Semicond. Res. 3, 9 (1998).

    Google Scholar 

  10. U. Karrer, A. Dobner, O. Ambacher, and M. Stutzmann, Phys. Status Solidi A 176, 163 (1999).

    Article  CAS  Google Scholar 

  11. L. Zhou, A.T. **, K. Boutros, J. Redwing, and I. Adesida, Electron. Lett. 35, 745 (1999).

    Article  CAS  Google Scholar 

  12. D. Qiao, L.S. Yu, S.S. Lau, J.M. Redwing, J.Y. Lin, and H.X. Jiang, J. Appl. Phys. 87, 801 (2000).

    Article  CAS  Google Scholar 

  13. J.P. Ao, D. Kikuta, N. Kubota, Y. Naoi, and Y. Ohno, IEEE Electron. Device Lett. 24, 500 (2003).

    Article  CAS  Google Scholar 

  14. J. Hilsenbeck, W. Rieger, E. Nebauer, W. John, G. Tränkle, J. Würfl, A. Ramakrishan, and H. Obloh, Phys. Status Solidi A 176, 183 (1999).

    Article  CAS  Google Scholar 

  15. A.P. Zhang, G. Dang, F. Ren, J. Han, A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, J.M. Redwing, H. Cho, and S.J. Pearton, Appl. Phys. Lett. 76, 3816 (2000).

    Article  CAS  Google Scholar 

  16. J. Hilsenbeck, E. Nebauer, J. Würfl, G. Tränkle, and H. Obloh, Electron. Lett. 36, 980 (2000).

    Article  CAS  Google Scholar 

  17. J. Würfl, J. Hilsenbeck, E. Nebauer, G. Tränkle, H. Obloh, and W. Österle, Microelectron. Reliab. 40, 1689 (2000).

    Article  Google Scholar 

  18. S. Arulkumaran, T. Egawa, H. Ishikawa, M. Umeno, and T. Jimbo, IEEE Trans. Electron Dev. 48, 573 (2001).

    Article  CAS  Google Scholar 

  19. E. Monroy et al., Phys. Status Solidi A 188, 367 (2001).

    Article  CAS  Google Scholar 

  20. J.P. Ao, D. Kikuta, N. Kubota, Y. Naoi, and Y. Ohno, IEICE T. Electron. E86-C, 2051 (2003).

    Google Scholar 

  21. V. Kumar, D. Selvanathan, A. Kuliev, S. Kim, J. Flynn, and I. Adesida, Electron. Lett. 39, 747 (2003).

    Article  CAS  Google Scholar 

  22. C.M. Jeon, H.W. Jang, and J.L. Lee, Appl. Phys. Lett. 82, 391 (2003).

    Article  CAS  Google Scholar 

  23. E.D. Readinger, B.P. Luther, S.E. Mohney, and E.L. Piner, J. Appl. Phys. 89, 7983 (2001).

    Article  CAS  Google Scholar 

  24. K. Prabhakaran, T.G. Andersson, and K. Nozawa, Appl. Phys. Lett. 69, 3212 (1996).

    Article  CAS  Google Scholar 

  25. S.D. Wolter, Materials (University Park, PA: The Pennsylvania State University, 1999), pp. 140–143.

    Google Scholar 

  26. T. Hashizume, R. Nakasaki, S. Ootomo, S. Oyama, and H. Hasegawa, Mater. Sci. Eng. B B80, 309 (2001).

    Article  CAS  Google Scholar 

  27. D. Mistele et al., Mater. Sci. Eng. B 93, 107 (2002).

    Article  Google Scholar 

  28. J.K. Kim, H.W. Jang, and J.-L. Lee, J. Appl. Phys. 94, 7201 (2003).

    Article  CAS  Google Scholar 

  29. J.M. DeLucca, Intercollege Graduate Program in Materials (University Park, PA: The Pennsylvania State University, 2000), pp. 137–145.

    Google Scholar 

  30. F.D. Auret, S.A. Goodman, F.K. Koschnick, J.-M. Spaeth, B. Beaumont, and P. Gibart, MRS Internet J. Nitride Semicond. Res. 4S1, G6.13 (1999).

    Google Scholar 

  31. J.M. DeLucca, S.E. Mohney, F.D. Auret, and S.A. Goodman, J. Appl. Phys. 88, 2593 (2000).

    Article  CAS  Google Scholar 

  32. F.D. Auret, S.A. Goodman, G. Myburg, S.E. Mohney, and J.M. DeLucca, Mater. Sci. Eng. B. 82, 102 (2001).

    Article  Google Scholar 

  33. J.P. Ponpon and P. Siffert, J. Appl. Phys. 49, 6004 (1978).

    Article  CAS  Google Scholar 

  34. J.P. Ponpon and P. Siffert, J. Appl. Phys. 50, 5050 (1979).

    Article  CAS  Google Scholar 

  35. E. van Wyk and A.W.R. Leitch, Appl. Surf. Sci. 221, 415 (2004).

    Article  Google Scholar 

  36. V.M. Bermudez and J.P. Long, Surf. Sci. 450, 98 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Readinger, E.D., Mohney, S.E. Environmental sensitivity of Au diodes on n-AlGaN. J. Electron. Mater. 34, 375–381 (2005). https://doi.org/10.1007/s11664-005-0114-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0114-5

Key words

Navigation