Log in

Droplet-Resolved Modeling on Dispersion Kinetics of Desulfurization Flux in a Mechanically Agitated Ladle for Hot Metal Treatment

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Insights into dispersed phases, such as droplets, and their distribution and evolution in a mechanically agitated ladle like Kanbara reactor (KR), which dramatically increases the contact area between phases/reactants and remarkably intensifies the rate phenomena, are of great significance to refining processes of steelmaking industries, but are still challenging and not fully understood. This work presents a droplet-resolved model (DRM) combined with a scaled-down water model experiment to investigate the dispersion behavior of desulfurization flux into the hot metal, wherein the DRM can directly acquire the small-scale dispersed droplets in the dispersion process and large-scale interface without employing any empirical relations. The study focuses include identifying the dispersion regimes, quantifying the dispersed phase, understanding their temporal and spatial evolution, and optimizing the operating/design parameters to intensify the desulfurization efficiency. Specifically, three dispersed regimes—non-dispersion, local dispersion, and emulsion/complete dispersion regimes—are first identified based on the experiments and numerical simulations. Further, after being validated by these experiments, the DRM model is applied to study a full-scale industrial KR, and two measures for quantifying the dispersed phases—the dispersion rate γ and the interfacial density B—are introduced. The simulation results revealed the develo** dispersion process as three stages: non-dispersion, transition, and dynamic equilibria. Also, the effect of the impeller rotation speed, immersion depth, blade dimensions, amount and density of molten desulfurization slag on γ and B, and the spatial distribution variation of the dispersed phase are discussed. Finally, two new correlations for evaluating the dispersion rate and interfacial density are proposed for hot metal desulfurization industrial ladles with mechanically agitated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P. Kozakevitch and T.G. John: JOM, 1969, vol. 21, pp. 57–68.

    Article  Google Scholar 

  2. A.N. Assis, J. Warnett, S. Spooner, R.J. Fruehan, M.A. Williams, and S. Sridhar: Metall. Mater. Trans B, 2015, vol. 46B, pp. 568–76.

    Article  Google Scholar 

  3. A. Senguttuvan and G.A. Irons: ISIJ Inter., 2017, vol. 57, pp. 1962–70.

    Article  Google Scholar 

  4. D. Tang and P.C. Pistorius: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1383–95.

    Article  Google Scholar 

  5. V.V. Visuri, T. Vuolio, T. Haas, and T. Fabritius: Steel Res. Int., 2020, vol. 91, p. 1900454.

    Article  Google Scholar 

  6. K. Kanbara, T. Nisugi, O. Shiraishi, and T. Hatakeyama: Tetsu-to-Hagané, 1972, vol. 58, p. 34.

    Google Scholar 

  7. Y. Nakai, I. Sumi, N. Kikuchi, K. Tanaka, and Y. Miki: ISIJ Int., 2017, vol. 57, pp. 1029–36.

    Article  Google Scholar 

  8. N. Lundkvist, P. Ni, M. Iguchi, A. Tilliander, and P.G. Jonsson: Steel Res. Int., 2018, vol. 89, pp. 89–96.

    Article  Google Scholar 

  9. H. Lachmund, Y.K. **e, T. Buhles, and W. Pluschkell: Steel Res. Int., 2016, vol. 74, pp. 77–85.

    Article  Google Scholar 

  10. S. Garcia-Hernandez, R.D. Morales, J.D. Barreto, I. Calderon-Ramos, and E. Gutierrez: Steel Res. Int., 2016, vol. 84, pp. 1154–67.

    Article  Google Scholar 

  11. Q. Wang, S.Y. Jia, F.G. Tan, G.Q. Li, D.G. Ouyang, S.H. Zhu, W. Sun, and Z. He: Metall. Mater. Trans. B, 2021, vol. 52, pp. 1085–94.

    Article  Google Scholar 

  12. Y. Liu, T.A. Zhang, P.P. Zhu, Z.H. Dou, X.L. Jiang, and J.C. He: Chin. J. Process Eng., 2010, vol. 10, pp. 58–62.

    Google Scholar 

  13. X. Cheng, J.L. Sun, J.J. Zhou, and D. **e: J. Wuhan Univ. Sci. Technol., 2015, vol. 38, pp. 330–35.

    Google Scholar 

  14. T. Yamamoto, W. Kato, S.V. Komarov, and Y. Ishiwata: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2547–56.

    Article  Google Scholar 

  15. J.H. Ji, R.Q. Liang, and J.C. He: ISIJ Int., 2016, vol. 56, pp. 794–802.

    Article  Google Scholar 

  16. S. Horiuchi, M.A. Uddin, Y. Kato, and N. Kikuchi: ISIJ Int., 2014, vol. 54, pp. 82–86.

    Article  Google Scholar 

  17. R. Tanaka, Y. Kato, and M.A. Uddin: ISIJ Int., 2018, vol. 58, pp. 620–26.

    Article  Google Scholar 

  18. R. Shiba, M.A. Uddin, Y. Kato, and S. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2754–60.

    Article  Google Scholar 

  19. Z. Alam, C. Kumar, K. Avatar, and D. Mazumdar: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 304–19.

    Article  Google Scholar 

  20. O. Mirgaux, D. Ablitzer, E. Waz, and J.P. Bellot: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 363–75.

    Article  Google Scholar 

  21. M.L. He, N. Wang, M. Chen, and C.F. Li: Powder Technol., 2020, vol. 361, pp. 455–61.

    Article  Google Scholar 

  22. W.T. Xu, Y.B. Tan, M. Li, J.L. Sun, D. **e, and Z. Liu: Particuology, 2020, vol. 49, pp. 159–68.

    Article  Google Scholar 

  23. M. Li, Y.B. Tan, J.L. Sun, D. **e, and Z. Liu: Chin. J. Chem. Eng., 2020, vol. 27, pp. 247–56.

    Article  Google Scholar 

  24. L. Wu, M. Gong, and J.T. Wang: Ind. Eng. Chem. Res., 2018, vol. 57, pp. 1714–25.

    Article  Google Scholar 

  25. Q.Q. Kang, D.P. He, N. Zhao, X. Feng, and J.T. Wang: Chem. Eng. J., 2020, vol. 386, p. 122846.

    Article  Google Scholar 

  26. Y. Nakai, I. Sumi, H. Matsuno, and Y. Kishimoto: ISIJ Int., 2010, vol. 50, pp. 403–10.

    Article  Google Scholar 

  27. M. Li, Y.B. Tan, Y.F. Liu, J.L. Sun, D. **e, and Z. Liu: Chin. J. Chem. Eng., 2020, vol. 27, pp. 2313–14.

    Article  Google Scholar 

  28. Q. Li, X.Y. Shen, S. Guo, M.M. Li, and Z.S. Zou: Steel Res. Int., 2021, vol. 92, p. 2100239.

    Article  Google Scholar 

  29. Q. Li and P.C. Pistorius: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1532–49.

    Article  Google Scholar 

  30. Q. Li and P. C. Pistorius: JOM, 2021, vol. pp. 73, pp. 2888–99.

  31. J.U. Brackbill, D.B. Kothe, and C. Zemach: J. Comp. Phys., 1992, vol. 100, pp. 335–54.

    Article  Google Scholar 

  32. C.W. Hirt and B.D. Nichols: Comp. Phys., 1981, vol. 39, pp. 201–05.

    Article  Google Scholar 

  33. O. Ubbink and R.I. Isssa: J. Comp. Phys., 1999, vol. 153, pp. 26–50.

    Article  Google Scholar 

  34. Q. Li, S.W. Ma, X.Y. Shen, M.M. Li, and Z.S. Zou: Metals, 2021, vol. 11, p. 1596.

    Article  Google Scholar 

  35. Q. Li, S.W. Ma, X.Y. Shen, M.M. Li, and Z.S. Zou: JOM, 2022, vol. 74, pp. 1588–1600.

    Article  Google Scholar 

  36. M.J.V. Goldschmidt, J.M. Link, S. Mellema, and J.A.M. Kuipers: Powder Technol., 2003, vol. 138, pp. 135–59.

    Article  Google Scholar 

  37. J.F. de Jong, T.Y.N. Dang, M.V. Annaland, and J.A.M. Kuipers: Powder Technol., 2012, vol. 230, pp. 93–105.

    Article  Google Scholar 

  38. G.R. Caicedo, J.J.P. Marques, M.G. Ruiz, and J.G. Soler: Chem. Eng. Process., 2003, vol. 42, pp. 9–14.

    Article  Google Scholar 

  39. F. Scargiali, A. Busciglio, F. Grisafi, A. Tamburini, G. Micale, and A. Brucato: Ind. Eng. Chem. Res., 2013, vol. 52, pp. 14998–15005.

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China under Grant No. 52074079 and the Fundamental Research Funds of the Central Universities of China under Grant No. N2125018.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Ma, S. & Zou, Z. Droplet-Resolved Modeling on Dispersion Kinetics of Desulfurization Flux in a Mechanically Agitated Ladle for Hot Metal Treatment. Metall Mater Trans B 53, 3648–3667 (2022). https://doi.org/10.1007/s11663-022-02627-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02627-x

Navigation