Log in

Combustion-Alumino-Magnesiothermic Reduction of TiO2 to Produce a Ti-Rich Ingot

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Titanium metal preparation from titanium dioxide (TiO2) has been the subject of numerous studies to overcome the chlorination processes at the heart of the Kroll process. In this study, an alumino-magnesiothermic reduction approach is employed to obtain a Ti-rich ingot via the combustion of an exothermic mixture of TiO2–KClO4–Al(Mg)-KClO4–CaF2 composition in argon. The combustion temperatures are measured, and the reaction patches are highlighted. The synthesis conditions of the Ti-rich ingot were carefully examined depending on the Al particle size, Al/Mg ratio, TiO2 precursor type, and CaF2 concentration. XRD analysis states that the ingot obtained under optimized experimental conditions is single-phase Ti metal. ICP-MS analysis revealed residual Al and O in the Ti ingot with 3.5 and 4.0 wt pct content, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Kroll: Trans. Electrochem. Soc., 1940, vol. 78, pp. 35–47.

    Article  Google Scholar 

  2. H.H. Nersisyan, H.I. Won, C.W. Won, A. Jo, and J.H. Kim: Chem. Eng. J., 2014, vol. 235, pp. 67–74.

    Article  CAS  Google Scholar 

  3. C.W. Won, H.H. Nersisyan, and H.I. Won: Chem. Eng. J., 2010, vol. 157, pp. 270–75.

    Article  CAS  Google Scholar 

  4. H.H. Nersisyan, J.H. Lee, J.R. Ding, K.S. Kim, K.V. Manukyan, and A.S. Mukasyan: Prog. Energy Combust. Sci., 2017, vol. 63, pp. 79–118.

    Article  Google Scholar 

  5. K. Choi, H. Choi, and I. Son: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 922–32.

    Article  Google Scholar 

  6. R. Bolivar and B. Friedrich: Proc. EMS, Germany, 2009, pp. 1–17.

  7. J.P. Coughlin: Mines Bull., 1954, vol. 542, pp. 14–28.

    Google Scholar 

  8. R.O. Suzuki and S. Inoue: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 277–85.

    Article  CAS  Google Scholar 

  9. A.D. Mah, K.K. Kelley, N.L. Gellert, E.G. King, and C.J. O’Brien: Thermodynamic Properties of Titanium-Oxygen Solutions and Compounds, Bureau of Mines, 1955.

  10. Y. **a, H.D. Lefler, Y. Zhang, P. Sun, and Z.Z. Fang: Extractive Metallurgy of Titanium, Elsevier, 2020, pp. 165–79.

    Book  Google Scholar 

  11. H. Lefler, Z.Z. Fang, Y. Zhang, P. Sun, and Y. **a: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2998–3006.

    Article  Google Scholar 

  12. Z.Z. Fang, Y. Zhang, H. Lefler, T. Zhang, P. Sun, and Z. Huang: Mater. Trans., 2017, vol. 58, pp. 355–60.

    Article  Google Scholar 

  13. Z.Z. Fang, S. Middlemas, J. Guo, and P. Fen: J. Am. Chem. Soc., 2013, vol. 135, pp. 18248–51.

    Article  CAS  Google Scholar 

  14. R.C. West: Handbook of Chemistry and Physics, 68th ed., CRC Press, Boca Raton, FL, 1987–1988.

  15. F.H. Froes: JOM, 1998, vol. 50, pp. 41–43.

    Article  CAS  Google Scholar 

  16. R.O. Suzuki: JOM, 2007, vol. 59, pp. 68–71.

    Article  CAS  Google Scholar 

  17. T.H. Okabe, T. Uda, E. Kasai, and Y. Waseda: Proc. TMS, 1997, pp. 133–51.

  18. T.H. Okabe, T. Oda, and Y. Mitsuda: J. Alloys Compd., 2004, vol. 364, pp. 156–63.

    Article  CAS  Google Scholar 

  19. H.H. Nersisyan, S.C. Kwon, V. Ri, Y.J. Lee, and B.U. Yoo: J. Solid State Chem., 2018, vol. 267, pp. 13–21.

    Article  CAS  Google Scholar 

  20. J.H. Lee, H. Nersisyan, K.S. Lim, W.B. Kim, and W.S. Choi: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 412–22.

    Google Scholar 

  21. A.A. Shiryaev: Int. J. SHS, 1995, vol. 4, pp. 351–62.

    CAS  Google Scholar 

  22. R. Mola and A. Dziadon: Arch. Foundry Eng., 2008, vol. 8, pp. 127–32.

    CAS  Google Scholar 

  23. L. Kjellqvist, P. Mason, Q. Chen, and K. Wu: Proc. TMS (Liq. Met. Process. Cast.), 2013, pp. 21–28.

Download references

Acknowledgments

This work was supported by the Industrial Strategic Technology Development Program (20010585, High Purity Metal Refining Technology for Titanium Metal with Zero Toxic Gas Emission) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Hyeon Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Nersisyan, H., Huynh, TN. et al. Combustion-Alumino-Magnesiothermic Reduction of TiO2 to Produce a Ti-Rich Ingot. Metall Mater Trans B 53, 3147–3158 (2022). https://doi.org/10.1007/s11663-022-02594-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02594-3

Navigation