Log in

Electrochemical Extraction of Nd from NaCl-KCl Melt by Formation of Cu-Nd Alloys

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Electrochemical behavior of Nd was studied in NaCl-KCl melt on W and Cu electrodes via cyclic voltammetry and chronopotentiometry. Generally, the reduction of Nd3+ takes place in two consecutive steps in molten chlorides, such as LiCl-CaCl2, LiCl-BaCl2, CaCl2-NaCl, LiCl-KCl melts. However, the reduction of Nd3+ ions was found to be through a one-step process: Nd3+ + 3e → Nd. The co-reduction behavior of Nd3+ and Cu2+ ions and the mechanisms of alloy formation were investigated in NaCl-KCl melt on W electrodes at 988 K (715 °C). Four potential plateaus corresponding to four different kinds of Cu-Nd intermetallic compounds were detected. Cu-Nd alloys were prepared on Cu electrodes at 988 K (715 °C) and 1143 K (870 °C). At 988 K (715 °C), Cu5Nd phase was identified by X-ray diffraction. The morphology and micro-zone chemical analysis of the alloys were characterized by scanning electron microscopy equipped with energy-dispersive spectrometry. The alloy film was observed on the Cu electrodes. Moreover, at 1143 K (870 °C), a globate bulk Cu-Nd alloy with Cu5Nd, Cu4Nd, Cu2Nd, CuNd, and Cu phases, as liquid in the melt, was obtained at the bottom of the crucible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Salvatores: Nucl. Eng. Des., 2005, vol. 235, pp. 805–16.

    Article  Google Scholar 

  2. M. Salvatores and G. Palmiotti: Prog. Part. Nucl. Phys., 2011, vol. 66, pp. 144–66.

    Article  Google Scholar 

  3. P. Taxil, L. Massot, C. Nourry, M. Gibilaro, P. Chamelot, and L. Cassayre: J. Fluor. Chem., 2009, vol. 130, pp. 94–101.

    Article  Google Scholar 

  4. D. Hudry, I. Bardez, A. Rakhmatullin, C. Bessada, F. Bart, S. Jobic, and P. Deniard: J. Nucl. Mater., 2008, vol. 381, pp. 284–89.

    Article  Google Scholar 

  5. T.R. Griffiths, V.A. Volkovich, S.M. Yakimov, I. May, C.A. Sharrad, and J.M. Charnock: J. Alloy. Compd., 2006, vol. 418, pp. 116–21.

    Article  Google Scholar 

  6. K. Fukasawa, A. Uehara, T. Nagai, T. Fujii, and H. Yamana: J. Nucl. Mater., 2011, vol. 414, pp. 265–69.

    Article  Google Scholar 

  7. J. Serp, P. Chamelot, S. Fourcaudot, R.J.M. Konings, R. Malmbeck, C. Pernel, J.C. Poignet, J. Rebizant, and J.P. Glatz: Electrochim. Acta, 2006, vol. 51, pp. 4024–32.

    Article  Google Scholar 

  8. A. Novoselova and V. Smolenski: Russ. J. Electrochem., 2013, vol. 49, pp. 931–37.

    Article  Google Scholar 

  9. G. DeCórdoba, A. Laplace, O. Conocar, J. Lacquement, and C. Caravaca: Electrochim. Acta, 2008, vol. 54, pp. 280–88.

    Article  Google Scholar 

  10. K. Fukasawa, A. Uehara, T. Nagai, T. Fujii, and H. Yamana: J. Alloy. Compd., 2011, vol. 509, pp. 5112–18.

    Article  Google Scholar 

  11. P. Masset, R.J.M. Konings, R. Malmbeck, J. Serp, and J.P. Glatz: J. Nucl. Mater., 2005, vol. 344, pp. 173–79.

    Article  Google Scholar 

  12. Y.D. Yan, Y.L. Xu, M.L. Zhang, Y. Xue, W. Han, Y. Huang, Q. Chen, and Z.J. Zhang: J. Nucl. Mater., 2013, vol. 433, pp. 152–59.

    Article  Google Scholar 

  13. A. Novoselova and V. Smolenski: Electrochim. Acta, 2013, vol. 87, pp. 657–62.

    Article  Google Scholar 

  14. K. Yasuda, S. Kobayashi, T. Nohira, and R. Hagiwara: Electrochim. Acta, 2013, vol. 92, pp. 349–55.

    Article  Google Scholar 

  15. C. Hamel, P. Chamelot, and P. Taxil: Electrochim. Acta, 2004, vol. 49, pp. 4467–76.

    Article  Google Scholar 

  16. E. Stefanidaki, C. Hasiotis, and C. Kontoyannis: Electrochim. Acta, 2001, vol. 46, pp. 2665–70.

    Article  Google Scholar 

  17. C. Nourry, L. Massot, P. Chamelot, and P. Taxil: J. Appl. Electrochem., 2009, vol. 39, pp. 927–33.

    Article  Google Scholar 

  18. M. Gibilaro, L. Massot, P. Chamelot, and P. Taxil: J. Nucl. Mater., 2008, vol. 382, pp. 39–45.

    Article  Google Scholar 

  19. P. Chamelot, L. Massot, C. Hamel, C. Nourry, and P. Taxil: J. Nucl. Mater., 2007, vol. 360, pp. 64–74.

    Article  Google Scholar 

  20. Y. Castrillejo, M.R. Bermejo, E. Barrado, A.M. Martínez, and P. Díaz Arocas: J. Electroanal. Chem., 2003, vol. 545, pp. 141–57.

    Article  Google Scholar 

  21. M. Gibilaro, L. Massot, P. Chamelot, and P. Taxil: Electrochim. Acta, 2009, vol. 54, pp. 5300–06.

    Article  Google Scholar 

  22. H. Konishi, T. Nohira, and Y. Ito: Electrochim. Acta, 2002, vol. 47, pp. 3533–39.

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Key Laboratory of Superlight Materials and Surface Technology (Harbin Engineering University), Ministry of Education, the National Natural Science Foundation of China (91326113, 91226201, and 51574097), the Science Foundation of Heilongjiang Province (LC2016018), the Fundamental Research Funds for the Central Universities (HEUCF2016012), the Foundation for University Key Teacher of Heilongjiang Province of China and Harbin Engineering University (1253G016 and HEUCFQ1415), and the Scientific Research and Special Foundation Heilongjiang Postdoctoral Science Foundation (LBH-Q15019, LBH-Q15020, and LBH-TZ0411).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to De-Bin Ji or Yong-De Yan.

Additional information

Manuscript submitted November 9, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZL., Zhou, LZ., Ji, DB. et al. Electrochemical Extraction of Nd from NaCl-KCl Melt by Formation of Cu-Nd Alloys. Metall Mater Trans B 48, 2535–2542 (2017). https://doi.org/10.1007/s11663-017-1017-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1017-6

Keywords

Navigation