Log in

Modeling of turbulent flow in electromagnetically levitated metal droplets

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This article details an effort to improve the understanding and prediction of turbulent flow inside a droplet of molten metal levitated in an electromagnetic field. It is shown that the flow field in a test case, a nickel droplet levitated under microgravity conditions, is in the transitional regime between laminar and turbulent flow. Past research efforts have used laminar, enhanced viscosity, and k−ɛ turbulence models to describe the flow. The method highlighted in our study is the renormalization group (RNG) algorithm. We show that an accurate description of the turbulent eddy viscosity μ T is critical in order to obtain realistic velocity fields, and that μ T cannot be uniform in levitated droplets. The RNG method does not impose isotropic length or time scales on the flow field, thus allowing such nonuniform features to be captured. A number of other materials processing applications exhibit similarly complex flow characteristics, such as highly recirculating, transitional, and free surface flows, for which this modeling approach may prove useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Egry and S. Sauerland: Mater. Sci. Eng., 1994, vol. A178, pp. 73–76.

    Google Scholar 

  2. I. Egry, G. Jacobs, E. Schwartz, and J. Szekely: Int. J. Thermophys., 1996, vol. 17 (5), pp. 1181–89.

    Article  CAS  Google Scholar 

  3. M.C. Flemings, G. Trapaga, and R. W. Hyers: The Measurement of Viscosity and Surface Tension of Undercooled Melts under Microgravity Conditions and Supporting MHD Calculations, Proc. NASA Microgravity Mater. Sci. Conf., Huntsville, AL, 1996.

  4. L.M. Racz and I. Egry: Rev. Sci. Instrum., 1995, vol. 66 (8), pp. 4254–58.

    Article  CAS  Google Scholar 

  5. E. Gorges, L.M. Racz, A. Schillings, and I. Egry: Int. J. Thermophys., 1996, vol. 17, pp. 1163.

    Article  CAS  Google Scholar 

  6. E. Schwartz, J. Szekely, O.J. Ilegbusi, J.-H. Zong, and I. Egry: Proc. Int. Symp. on MHD in Proc. Metallic Droplets in the Microgravity Environment, TMS, Warrendale, PA, 1992, pp. 81–87.

    Google Scholar 

  7. J.-H. Zong, B.Q. Li, and J. Szekely: Acta Astronautica, 1992, vol. 26 (4), pp. 435–39; 1993 vol. 29 (6), pp. 305–11.

    Article  Google Scholar 

  8. B.Q. Li: Int. J. Eng. Sci., 1993, vol. 31 (2), pp. 201–20.

    Article  Google Scholar 

  9. B.Q. Li: Int. J. Eng. Sci., 1994, vol. 32 (8), pp. 1315–36.

    Article  CAS  Google Scholar 

  10. J.R. Bhamidipati and N. El-Kaddah: Proc. 2nd Int. Symp. on Materials Processing in the Computer Age, V.R. Voller, S.P. March, and N. El-Kaddah, eds. TMS, Warrendale, PA, 1992, pp. 22–232.

    Google Scholar 

  11. G. Lohofer: SIAM J. Appl. Math., 1989, vol. 49, pp. 567–81.

    Article  Google Scholar 

  12. E. Schwartz: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1995.

    Google Scholar 

  13. R.W. Hyers: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1998.

    Google Scholar 

  14. E. Schwartz and J. Szekely: Proc. Int. Symp. on Materials Processing in the Computer Age II, TMS, Warrendale, PA, 1995, pp. 147–61.

    Google Scholar 

  15. N. El-Kaddah and J. Szekely: Metall. Trans. B, 1983, vol. 14B, pp. 401–10.

    CAS  Google Scholar 

  16. V. Yakhot and S.A. Orszag, J. Sci. Comp., 1986, vol. 1 (3).

  17. H.A. Haus and J.R. Melcher: Electromagnetic Fields and Energy, Prentice-Hall, Englewood Cliffs, NJ, 1989.

    Google Scholar 

  18. J.R. Melcher: Continuum Electromechanics, MIT Press, Cambridge, MA, 1981.

    Google Scholar 

  19. W.P. Jones and B.E. Launder: Int. J. Heat Mass Transfer, 1972, vol. 15 (8), pp. 301–14.

    Article  Google Scholar 

  20. W. Rodi. Turbulence Models and Their Applications in Hydraulics, Brookfield Publishing Madison, WI, 1984.

    Google Scholar 

  21. Y. Nakamura and A.E. Sakya: Computers and Fluids, 1995, vol. 4 (8), pp. 909–18.

    Article  Google Scholar 

  22. T.S. Lund: in Instability and Transition, M.Y. Hussaini and R.G. Voigt, eds., Springer-Verlag, New York, NY, 1990.

    Google Scholar 

  23. U. Piomelli: in Instability and Transition, M.Y. Hussaini and R.G. Voigt, eds. Springer-Verlag, New York, NY, 1990.

    Google Scholar 

  24. A.D. Sneyd and H.K. Moffatt: J. Fluid Mech., 1982, vol. 117; pp. 45–70.

    Article  CAS  Google Scholar 

  25. W. Brisley and B.S. Thornton: Br. J. Appl. Phys., 1963, vol. 14; pp. 682–86.

    Article  Google Scholar 

  26. G. Lohofer: Q. Appl. Math, L1 1993, vol. (3), pp. 495–518.

  27. J-H. Zong, J. Szekely, and E. Schwartz: IEEE Trans. Magn., 1992, vol. 28 (3), pp. 1833–42.

    Article  Google Scholar 

  28. J.A. Dantzig and S.P. Midson: Proc. 2nd. Int. Conf. on the Processing of Semi-Solid Alloys and Composites, TMS, Warrendale, PA, 1992, pp. 105–18.

    Google Scholar 

  29. I. Egry: Materials and Fluids under Low Gravity: Proc. IXth Eur. Symp. on Gravity-Dependent Phenomena in Physical Sciences, Springer-Verlag, New York, NY, 1996, pp. 233–52.

    Google Scholar 

  30. S.R. Berry: Master’s Thesis, Tufts University, Medford, MA, 1998.

    Google Scholar 

  31. FLUENT Version 4.4, Fluent, Inc., Lebanon, NH, 1998.

  32. F.R. Block and A. Thiessen: Elektrowarme Int., 1971, vol. 29; p. 249.

    Google Scholar 

  33. S.Y. Stephan: Ph.D. Thesis, University College, London, UK, 1975.

    Google Scholar 

  34. I.V. Samarasekera, B.G. Thomas, and J.K. Brimacombe: Proc. Julian Szekely Memorial Symp. on Materials Processing, H.Y. Sohn, J.W. Evans, and D. Apelian, eds., TMS, Warrendale, PA, 1997.

    Google Scholar 

  35. M. Bonvalot, E. Beaugnon, P. Courtois, and P. Gillon: Int Symp. Electromagnetically Processed Materials, ISIJ, Nagoya, 1994, pp. 473–78.

    Google Scholar 

  36. M. Bonvalot, P. Courtois, P. Gillon, and R. Tournier: J. Magnetism Magnetic Mater. 1995, vol. 151, pp. 283–89.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, S., Hyers, R.W., Abedian, B. et al. Modeling of turbulent flow in electromagnetically levitated metal droplets. Metall Mater Trans B 31, 171–178 (2000). https://doi.org/10.1007/s11663-000-0142-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-000-0142-8

Keywords

Navigation