Log in

Microstructure-Superplastic Properties Relationship and Deformation Mechanism in a Novel Dual-Phase Medium Mn Steel: The Effect of Microstructure Anisotropy and Texture

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this paper, the tensile properties, texture evolution, and deformation anisotropy of a cold-rolled Fe−0.3C–6.86Mn–3.5Al steel during superplastic deformation at 650 °C–750 °C and 0.25 × 10−3 s−1− 4 × 10−3 s−1 were studied. In particular, under 750 °C and 1 × 10−3 s−1, the anisotropic microstructure evolution and texture characteristics were measured using EBSD. The results indicate that Medium Mn steel (MMS) sheets exhibit significant anisotropy under high tensile stress. The transverse direction (TD) specimens exhibit the highest peak strength of 145 MPa, and rolling direction (RD) specimens exhibit the highest elongation of 1295 pct. The plastic anisotropy r value of the RD sample varied more significantly than that of the TD sample. When the RD sample fractures, the aspect ratio reaches its minimum value (1.52), and ellipse fitting angle (θ) distributes from 0 to 90 degree and from 180 to 90 degree, which indicates that a large number of grains have undergone rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All data in this study are available from the corresponding author by request.

References

  1. S.S. Li and H.W. Luo: Int. J. Miner. Met. Mater., 2021, vol. 28, pp. 741–53.

    Article  CAS  Google Scholar 

  2. H.J. Pan, P. Jiang, Y. Zhang, W.P. Wu, Z.Z. Wang, Q. Wang, and H.Y. Li: Mater. Sci. Eng. A, 2021, vol. 802, p. 140680.

    Article  CAS  Google Scholar 

  3. O. Bouaziz, H. Zurob, and M.X. Huang: Steel Res. Int., 2013, vol. 84, pp. 937–47.

    Article  CAS  Google Scholar 

  4. B. Chongthairungruang, V. Uthaisangsuk, S. Suranuntchai, and S. Jirathearanat: Mater. Des., 2012, vol. 39, pp. 318–28.

    Article  CAS  Google Scholar 

  5. J.Y. Lee, M. Kim, and Y.L. Lee: Mater. Sci. Eng. A, 2022, vol. 843, p. 143148.

    Article  CAS  Google Scholar 

  6. S.B. Bai, W.T. **ao, W.Q. Niu, D.Z. Li, and W. Liang: Materials, 2021, vol. 14, p. 2233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. K. Mori, K. Akita, and Y. Abe: Int. J. Mach. Tools Manuf, 2007, vol. 47, pp. 321–25.

    Article  Google Scholar 

  8. J. Wongsa-Ngam and T.G. Langdon: Metals, 2022, vol. 12, p. 1921.

    Article  Google Scholar 

  9. J. Han, S.H. Kang, S.J. Lee, M. Kawasaki, H.J. Lee, D. Ponge, D. Raabe, and Y.K. Lee: Nat. Commun., 2017, vol. 8, p. 751.

    Article  PubMed  PubMed Central  Google Scholar 

  10. S.H. Kang, S.W. Choi, Y.D. Im, and Y.K. Lee: Mater. Sci. Eng. A, 2020, vol. 780, p. 139174.

    Article  CAS  Google Scholar 

  11. S.H. Kang, H.B. Jeong, J.S. Hong, and Y.K. Lee: Mater. Sci. Eng. A, 2021, vol. 822, p. 141697.

    Article  CAS  Google Scholar 

  12. W.Q. Cao, C.X. Huang, C. Wang, H. Dong, and Y.Q. Weng: Sci. Rep., 2017, vol. 7, p. 9199.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Z.X. Cao, G.L. Wu, X.J. Sun, C. Wang, D. Ponge, and W.Q. Cao: Scr. Mater., 2018, vol. 152, pp. 27–30.

    Article  CAS  Google Scholar 

  14. R. Song, D. Ponge, D. Raabe, and R. Kaspar: Acta Mater., 2005, vol. 53, pp. 845–58.

    Article  CAS  Google Scholar 

  15. H. Zhang, B. Bai, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 5787–802.

    Article  CAS  Google Scholar 

  16. H. Zhang, K.G. Pradeep, S. Mandal, D. Ponge, P. Choi, C.C. Tasan, and D. Raabe: Acta Mater., 2014, vol. 63, pp. 232–44.

    Article  CAS  Google Scholar 

  17. H.B. Jeong, S.W. Choi, S.H. Kang, and Y.K. Lee: Mater. Sci. Eng. A, 2022, vol. 848, p. 143408.

    Article  CAS  Google Scholar 

  18. H.B. Jeong, J.Y. Lee, J.C. **, H.J. Cho, and Y.K. Lee: J. Alloy. Compd., 2023, vol. 958, p. 170536.

    Article  CAS  Google Scholar 

  19. H.J. Cho, H.B. Jeong, J.Y. Lee, and Y.K. Lee: J. Mater. Res. Technol., 2023, vol. 27, pp. 7905–16.

    Article  CAS  Google Scholar 

  20. R.B. Figueiredo, M. Kawasaki, and T.G. Langdon: Prog. Mater. Sci., 2023, vol. 137, p. 101131.

    Article  Google Scholar 

  21. X.G. Fan, X.Q. Jiang, X. Zeng, Y.G. Shi, P.F. Gao, and M. Zhan: Int. J. Plast., 2018, vol. 104, pp. 173–95.

    Article  CAS  Google Scholar 

  22. W. Li, Z. Chen, J. Liu, Q. Wang, and G. Sui: Mater. Sci. Eng. A, 2017, vol. 688, pp. 322–29.

    Article  CAS  Google Scholar 

  23. W. Li, Z. Chen, J. Liu, S. Zhu, G. Sui, and Q. Wang: J. Mater. Sci. Technol., 2019, vol. 35, pp. 790–98.

    Article  CAS  Google Scholar 

  24. A.S. Khan and S. Yu: Int. J. Plast., 2012, vol. 38, pp. 1–3.

    Article  CAS  Google Scholar 

  25. M. Park, M.S. Seok Kang, G.W. Park, H.C. Kim, H.S. Moon, B. Kim, J.B. Jeon, H. Kim, H.S. Park, S.H. Kwon, and B.J. Kim: Met. Mater. Int., 2021, vol. 27, pp. 3839–55.

    Article  CAS  Google Scholar 

  26. M. Madivalaa, A. Schwedtb, U. Prahla, and W. Blecka: Int. J. Plast., 2019, vol. 115, pp. 178–99.

    Article  Google Scholar 

  27. S. Picak, M.W. Vaughan, O. El Atwani, A. Mott, K.R. Limmer, and I. Karaman: Acta Mater., 2023, vol. 245, p. 118589.

    Article  CAS  Google Scholar 

  28. S.H. Zhang, L. Deng, and L.Z. Che: J. Manuf. Process., 2022, vol. 75, pp. 100–109.

    Article  Google Scholar 

  29. S.H. Zhang, L. Deng, W.H. Tian, L.Z. Che, and Y. Li: Comput. Math. with Appl., 2022, vol. 109, pp. 58–73.

    Article  Google Scholar 

  30. Y. Wu, R.L. Fan, M.H. Chen, K.H. Wang, J. Zhao, and W.C. **ao: Mater. Sci. Eng. A, 2021, vol. 820, p. 141560.

    Article  CAS  Google Scholar 

  31. Y. Cao, H. Di, J. Zhang, T. Ma, and R.D.K. Misra: Mater. Sci. Eng. A, 2013, vol. 585, pp. 71–85.

    Article  CAS  Google Scholar 

  32. X.F. Tang, B.Y. Wang, H.C. Ji, X.B. Fu, and W.C. **ao: Mater. Sci. Eng. A, 2016, vol. 675, pp. 192–203.

    Article  CAS  Google Scholar 

  33. T.S. Byun, N. Hashimoto, and K. Farrell: Acta Mater., 2004, vol. 52, pp. 3889–99.

    Article  CAS  Google Scholar 

  34. L. Huang, P. Hua, W. Sun, F. Liu, and F. Qi: Mater. Sci. Eng. A, 2015, vol. 647, pp. 277–86.

    Article  CAS  Google Scholar 

  35. T. Sakaki and K. Sugimoto: ICSMA, 1985, vol. 7, pp. 239–44.

    Google Scholar 

  36. H.J. Pan, C.F. Wei, H.M. Zhang, X.Y. Li, L. Liu, J. Li, and Z.Q. Wu: Mater. Sci. Eng. A, 2023, vol. 873, p. 145025.

    Article  CAS  Google Scholar 

  37. H.J. Pan, X.Y. Li, H.M. Zhang, L. Liu, J. Li, Y.J. Zhao, Z.J. Wang, Y. Zhang, Z.Q. Wu, M.H. Cai, and H. Ding: Mater. Sci. Eng. A, 2023, vol. 862, p. 144493.

    Article  CAS  Google Scholar 

  38. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.

    Article  Google Scholar 

  39. T.L. Li, S. Yan, and X.H. Liu: J. Mater. Res. Technol., 2021, vol. 15, pp. 708–18.

    Article  CAS  Google Scholar 

  40. H.J. Pan, X.Y. Li, B. Qiao, Y. Zhang, N.M. Miao, L. Liu, H. Ding, and M.H. Cai: J. Mater. Eng. Perform., 2022, vol. 31(417), pp. 3228–33.

    Article  CAS  Google Scholar 

  41. B.J. Duggan, Y.Y. Tse, G. Lam, and M.Z. Quadir: Mater. Manuf. Processes, 2011, vol. 26, pp. 51–57.

    Article  CAS  Google Scholar 

  42. B. Eghbali: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3407–10.

    Article  Google Scholar 

  43. H. Watanabe, K. Kurimoto, T. Uesugi, Y. Takigawa, and K. Higashi: Philos. Mag., 2013, vol. 93, pp. 2913–31.

    Article  CAS  Google Scholar 

  44. T.G. Langdon: J. Mater. Sci., 2009, vol. 44, pp. 5998–6010.

    Article  CAS  Google Scholar 

  45. G. Sun, H. Liu, X.J. Wang, X.S. Hu, and S.S. Jiang: Mater. Char., 2021, vol. 172, p. 110879.

    Article  CAS  Google Scholar 

  46. C.Z. Zhang, Y. **ao, K.J. Ma, Y.H. Wang, Z.P. Liu, Z.J. Liu, and W.J. Zhang: Metals, 2021, vol. 11, p. 404.

    Article  CAS  Google Scholar 

  47. Y. Zhang, S. Chang, Y.Y. Chen, Y.C. Bai, C.L. Zhao, X.P. Wang, J.M. Xue, and H. Wang: J. Mater. Sci. Technol., 2021, vol. 95, pp. 225–36.

    Article  CAS  Google Scholar 

  48. R. Altur, L.G. Hect, C.M. Enlo, F.A. Far, T.W. Brow: TMS. 03 April 2018.

  49. Q.L. Wang, M.F. Novella, A. Ghiotti, and S. Bruschi: Procedia Eng., 2017, vol. 207, pp. 2161–66.

    Article  CAS  Google Scholar 

  50. H. Masuda, T. Kanazawa, H. Tobea, and E. Sato: Scr. Mater., 2018, vol. 149, pp. 84–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank you for the project support from Ministry of Science and Technology of China (No. 52204382 and 52274381), Jiangsu Province (No. BK20200985), Postdoctoral Administration Office in China (No.2021M701717), and Changzhou (No. CQ20210102 and CE20225054).

Author information

Authors and Affiliations

Authors

Contributions

Haijun Pan contributed to Conceptualization, Methodology, Investigation, Writing, reviewing, & editing of the manuscript, Formal analysis, Funding acquisition, and Supervision. Chaofan Wei contributed to Resources, Data curation, and Writing of the original draft. Shunhu Zhang contributed to Visualization, Writing, reviewing, & editing of the manuscript, and Supervision. Wenhao Zhou contributed to Visualization, Writing, reviewing, & editing of the manuscript, and Supervision. Zhiqiang Wu contributed to Visualization, Writing, reviewing, & editing of the manuscript, and Supervision. Yi Zhao contributed to Writing, reviewing, & editing of the manuscript and Supervision. Lin Liu contributed to Writing, reviewing, & editing of the manuscript and Supervision.

Corresponding authors

Correspondence to Shunhu Zhang or Lin Liu.

Ethics declarations

Conflict of interest

All authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Wei, C., Zhang, S. et al. Microstructure-Superplastic Properties Relationship and Deformation Mechanism in a Novel Dual-Phase Medium Mn Steel: The Effect of Microstructure Anisotropy and Texture. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-07493-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11661-024-07493-7

Navigation