Log in

Macro-scale Compositional Inhomogeneity in Friction Stir Processed Mg–Al–Zn Cast Alloy and Its Effect on Mechanical Property

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

It has long been considered that compositional homogeneity would not be altered on the macro-scale by solute segregation during friction stir processing (FSP) without additives. Yet in this study, for the first time, macro-scale compositional inhomogeneity was found to be induced by FSP in AZ91. Using micro X-ray fluorescence spectrometry, three regions that different from conventional microstructural zones were clearly divided from the processed material, i.e., R1 with obvious enrichment of Al and Zn, R2 with significant depletion of Al and Zn, R3 with a similar composition to base material. R1 was found almost identical to the stir zone, while R2 occupied only a part of thermo-mechanically affected zone where grain structure was refined, and the evolution of R2 should have a strong correlation with grain refinement in thermo-mechanically affected zone. The underlying mechanisms of this newly discovered phenomenon could be attributed to dissolution of β-Mg17(Al, Zn)12 in R2 and accelerated segregation of Al and Zn from R2 to R1 driven by the reduction in their chemical potentials in R1 caused by higher temperature in this region during FSP. The local mechanical property in regions of different composition was evaluated by micro-hardness. Local softening was observed in R2, which can be mainly attributed to significantly reduced solid solution strengthening resulting from the depletion of Al and Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T.M. Pollock: Science, 2010, vol. 328, pp. 986–87.

    Article  CAS  PubMed  Google Scholar 

  2. D. Sameer Kumar, C. Tara Sasanka, K. Ravindra, and K.N.S. Suman: Am. J. Mater. Sci. Technol., 2015, vol. 4, pp. 12–30.

    Google Scholar 

  3. Z. Wu and W.A. Curtin: Nature, 2015, vol. 526, pp. 62–67.

    Article  CAS  PubMed  Google Scholar 

  4. B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37–45.

    Article  Google Scholar 

  5. A.A. Luo: J. Magnes. Alloys, 2013, vol. 1, pp. 2–22.

    Article  CAS  Google Scholar 

  6. A. Raja and V. Pancholi: J. Mater. Process. Technol., 2017, vol. 248, pp. 8–17.

    Article  CAS  Google Scholar 

  7. A.H. Feng and Z.Y. Ma: Acta Mater., 2009, vol. 57, pp. 4248–60.

    Article  CAS  Google Scholar 

  8. A.H. Feng, B.L. **ao, Z.Y. Ma, and R.S. Chen: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2447–56.

    Article  CAS  Google Scholar 

  9. F. Chai, D. Zhang, and Y. Li: J. Magnes. Alloys, 2015, vol. 3, pp. 203–09.

    Article  CAS  Google Scholar 

  10. H. Jiryaei Sharahi, M. Pouranvari, and M. Movahedi: Mater. Sci. Eng. A, 2020, vol. 781, p. 139249.

    Article  Google Scholar 

  11. W.-B. Lee, J.-W. Kim, Y.-M. Yeon, and S.-B. Jung: Mater. Trans., 2003, vol. 44, pp. 917–23.

    Article  CAS  Google Scholar 

  12. A. Kouadri-Henni and L. Barrallier: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4983–96.

    Article  Google Scholar 

  13. M.D. Sameer and A.K. Birru: J. Magnes. Alloys, 2019, vol. 7, pp. 264–71.

    Article  CAS  Google Scholar 

  14. S. Mironov, Y.S. Sato, and H. Kokawa: J. Mater. Sci. Technol., 2018, vol. 34, pp. 58–72.

    Article  CAS  Google Scholar 

  15. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng. R, 2005, vol. 50, pp. 1–78.

    Article  Google Scholar 

  16. A. Heidarzadeh, S. Mironov, R. Kaibyshev, G. Çam, A. Simar, A. Gerlich, F. Khodabakhshi, A. Mostafaei, D.P. Field, J.D. Robson, A. Deschamps, and P.J. Withers: Prog. Mater. Sci., 2021, vol. 117, p. 100752.

    Article  CAS  Google Scholar 

  17. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes: Patent Application No. 9125978.8, in 1991.

  18. R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee: Scripta Mater., 2000, vol. 42, pp. 163–68.

    Article  CAS  Google Scholar 

  19. X. Fu, K. Chen, Q. Zhang, N. Chen, M. Wang, and X. Hua: J. Magnes. Alloys, 2023 (in press).

  20. X. Fu, K. Chen, C. Liu, M. Wang, and X. Hua: Mater Charact, 2022, vol. 187, p. 111870.

    Article  CAS  Google Scholar 

  21. F.C. Liu and P. Dong: Scripta Mater., 2021, vol. 191, pp. 167–72.

    Article  CAS  Google Scholar 

  22. C. Lee, J. Huang, and P. Hsieh: Scripta Mater., 2006, vol. 54, pp. 1415–20.

    Article  CAS  Google Scholar 

  23. Z.Y. Liu, B.L. **ao, W.G. Wang, and Z.Y. Ma: Carbon, 2014, vol. 69, pp. 264–74.

    Article  CAS  Google Scholar 

  24. G. Huang, J. Wu, W. Hou, and Y. Shen: Mater. Sci. Eng. A, 2018, vol. 734, pp. 353–63.

    Article  CAS  Google Scholar 

  25. C.H. Caceres and D.M. Rovera: J. Light. Met., 2001, vol. 1, pp. 151–56.

    Article  Google Scholar 

  26. F. Guo, D. Zhang, Wu. Huayi, L. Jiang, and F. Pan: J. Alloys Compd., 2017, vol. 695, pp. 396–403.

    Article  CAS  Google Scholar 

  27. Q.S. Zhang, L. **ao, K. Chen, M. Wang, X.M. Hua, L.T. Zhang, A.D. Shan, and H. Wang: Mater. Lett., 2021, vol. 284, p. 128924.

    Article  CAS  Google Scholar 

  28. C.H. Caceres and A. Blake: Phys. Stat. Sol. (a), 2002, vol. 194, pp. 147–58.

    Article  CAS  Google Scholar 

  29. S. Cai, T. Lei, N. Li, and F. Feng: Mater. Sci. Eng. C, 2012, vol. 32, pp. 2570–77.

    Article  CAS  Google Scholar 

  30. K. Wei, X. Zeng, Z. Wang, J. Deng, M. Liu, G. Huang, and X. Yuan: Mater. Sci. Eng. A, 2019, vol. 756, pp. 226–36.

    Article  CAS  Google Scholar 

  31. D. Zhang, S. Wang, C. Qiu, and W. Zhang: Mater. Sci. Eng. A, 2012, vol. 556, pp. 100–06.

    Article  CAS  Google Scholar 

  32. G. Zeng, S.S. Shuai, X.Z. Zhu, S.X. Ji, J.W. **an, and C.M. Gourlay: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 2523–35.

    Article  Google Scholar 

  33. A.H. Feng and Z.Y. Ma: Scripta Mater., 2007, vol. 56, pp. 397–400.

    Article  CAS  Google Scholar 

  34. G. Eisenmeier, B. Holzwarth, H.W. Hoppel, and H. Mughrabi: Mater. Sci. Eng. A, 2001, vol. 319–321, pp. 578–82.

    Article  Google Scholar 

  35. H.Y. Choi and W.J. Kim: J. Alloys Compd., 2017, vol. 696, pp. 736–45.

    Article  CAS  Google Scholar 

  36. P. Cavaliere and P.P. De Marco: J. Mater. Process. Technol., 2007, vol. 184, pp. 77–83.

    Article  CAS  Google Scholar 

  37. D.R. Ni, D.L. Chen, J. Yang, and Z.Y. Ma: Mater. Des., 2014, vol. 56, pp. 1–8.

    Article  CAS  Google Scholar 

  38. C.H. Cáceres, J.R. Griffiths, A.R. Pakdel, and C.J. Davidson: Mater. Sci. Eng. A, 2005, vol. 402, pp. 258–68.

    Article  Google Scholar 

  39. P. Asadi, R.A. Mahdavinejad, and S. Tutunchilar: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6469–77.

    Article  CAS  Google Scholar 

  40. M. Ohno, D. Mirkovic, and R. Schmid-Fetzer: Mater. Sci. Eng. A, 2006, vol. 421, pp. 328–37.

    Article  Google Scholar 

  41. D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase Transformations in Metals and Alloys, 3rd ed. CRC Press, Taylor & Francis Group, Boca Raton, 2009, p. 97.

    Google Scholar 

  42. S. Celotto and T.J. Bastow: Acta Mater., 2001, vol. 49, pp. 41–51.

    Article  CAS  Google Scholar 

  43. S.K. Das, N. Brodusch, R. Gauvin, and I.-H. Jung: Scripta Mater., 2014, vol. 80, pp. 41–44.

    Article  CAS  Google Scholar 

  44. J. Čermák and I. Stloukal: Phys. Stat. Sol., 2006, vol. 203, pp. 2386–92.

    Google Scholar 

  45. Z.B. Wang, N.R. Tao, W.P. Tong, J. Lu, and K. Lu: Acta Mater., 2003, vol. 51, pp. 4319–29.

    Article  CAS  Google Scholar 

  46. G.R. Love: Acta Metall., 1964, vol. 12, pp. 731–37.

    Article  Google Scholar 

  47. M. Legros, G. Dehm, E. Arzt, and T. John Balk: Science, 2008, vol. 319, pp. 1646–49.

    Article  CAS  PubMed  Google Scholar 

  48. J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney: Acta Mater., 2003, vol. 51, pp. 713–29.

    Article  CAS  Google Scholar 

  49. A. Gryguc, S.K. Shaha, S.B. Behravesh, H. Jahed, M. Wells, B. Williams, and X. Su: Int. J. Fatigue, 2017, vol. 104, pp. 136–49.

    Article  CAS  Google Scholar 

  50. A. Gryguc, S.B. Behravesh, S.K. Shaha, H. Jahed, M. Wells, B. Williams, and X. Su: Int. J. Fatigue, 2018, vol. 116, pp. 429–38.

    Article  CAS  Google Scholar 

  51. A. Gryguć, S.B. Behravesh, S.K. Shaha, H. Jahed, M. Wells, B. Williams, and X. Su: Int. J. Fatigue, 2019, vol. 127, pp. 324–37.

    Article  Google Scholar 

  52. G.P. Leyson, W.A. Curtin, L.G. Hector Jr., and C.F. Woodward: Nat. Mater., 2010, vol. 9, pp. 750–55.

    Article  CAS  PubMed  Google Scholar 

  53. I. Toda-Caraballo, E.I. Galindo-Nava, and P.E.J. Rivera-Díaz-del-Castillo: Acta Mater., 2014, vol. 75, pp. 287–96.

    Article  CAS  Google Scholar 

  54. J.F. Nie: Scripta Mater., 2003, vol. 48, pp. 1009–15.

    Article  CAS  Google Scholar 

  55. S.H.C. Park, Y.S. Sato, and H. Kokawa: J. Mater. Sci., 2003, vol. 38, pp. 4379–83.

    Article  CAS  Google Scholar 

  56. G. Li, L. Zhou, S. Luo, F. Dong, and N. Guo: Mater. Sci. Eng. A, 2020, vol. 776, p. 138953.

    Article  CAS  Google Scholar 

  57. F. Pan, Xu. Anlian, D. Deng, J. Ye, X. Jiang, A. Tang, and Y. Ran: Mater. Des., 2016, vol. 110, pp. 266–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 52075330), the Foundation of National Facility for Translational Medicine (Shanghai) (No. TMSK-2020-107). The authors are grateful to Ms. Li Jiang of Instrumental Analysis Center of Shanghai Jiao Tong University, for her assistance in characterization of elemental macro-distribution by μ-XRF.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Fu, X., Li, G. et al. Macro-scale Compositional Inhomogeneity in Friction Stir Processed Mg–Al–Zn Cast Alloy and Its Effect on Mechanical Property. Metall Mater Trans A 55, 1550–1563 (2024). https://doi.org/10.1007/s11661-024-07343-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-024-07343-6

Navigation