Log in

The Influence of Cu on Combustion Synthesis Mechanism of Ti–Al Intermetallic Compounds Produced From Ti and Al Elemental Powders

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of slight content of Cu as an additive on the reaction mechanism and microstructure of Ti–Al intermetallic compounds, during sintering process of Ti and Al elemental powders, was investigated. High-purity powders of Al, Ti, and Cu were used. The molar ratio of Ti/Al was equal to one. Considerable changes in reaction mechanism and heat of formation for different samples with different heating rates and different additive contents during combustion synthesis process were observed. The temperature was monitored by a data acquisition system or DAS. The samples were analyzed by XRD and SEM techniques. According to the experimental findings, complete formation of products was achieved at distinct additive content and heating rate. The initial reaction temperature and the samples’ porosities were lowered by the addition of Cu. The sample hardness varied depending on the heating rate and Cu content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Data Acquisition System

  2. low heating rate

  3. high heating rate

References

  1. Q. Wan, F. Li, W. Wang, J. Hou, W. Cui, and Y. Li: Materials, 2019, vol. 12, p. 1967. https://doi.org/10.3390/ma12121967.

    Article  CAS  Google Scholar 

  2. N. Kochetov and A.E. Sytschev: Mater. Chem. Phys., 2021, vol. 257, p. 123727. https://doi.org/10.1016/j.matchemphys.2020.123727.

    Article  CAS  Google Scholar 

  3. M. Yamaguchi, H. Inui, and K. Ito: Acta Mater., 2000, vol. 48(1), pp. 307–22. https://doi.org/10.1016/S1359-6454(99)00301-8.

    Article  CAS  Google Scholar 

  4. P. Tan, H.P. Tang, X.T. Kang, Q.B. Wang, J.L. Zhu, C. Li, and J.M. Chen: Mater. Trans., 2009, vol. 50(10), pp. 2484–87. https://doi.org/10.2320/matertrans.M2009120.

    Article  CAS  Google Scholar 

  5. A. Školáková, P. Salvetr, P. Novák, and D. Vojtěch: Acta Phys. Pol. A, 2018, vol. 134, pp. 743–47. https://doi.org/10.12693/APhysPolA.134.743.

    Article  Google Scholar 

  6. K. Karczewski, S. Jóźwiak, M. Chojnacki, and Z. Bojar: Intermetallics, 2010, vol. 18(7), pp. 1401–04. https://doi.org/10.1016/j.intermet.2010.02.018.

    Article  CAS  Google Scholar 

  7. E. Levashov, A.S. Mukasyan, A.S. Rogachev, and D.V. Shtansky: Int. Mater. Rev., 2017, vol. 62(4), pp. 203–39. https://doi.org/10.1080/09506608.2016.1243291.

    Article  CAS  Google Scholar 

  8. M. Lagos, I. Agote, M. Gutiérrez, A. Sargsyan, and L. Pambaguian: Int. J. Self-Propagating High-Temp. Synth., 2010, vol. 19(1), pp. 23–27. https://doi.org/10.3103/S1061386210010048.

    Article  CAS  Google Scholar 

  9. X. Jiao, Y. Liu, X. Cai, J. Wang, and P. Feng: J. Mater. Sci., 2021, https://doi.org/10.1007/s10853-021-06035-5.

    Article  Google Scholar 

  10. K. Karczewski, S. Jóźwiak, M. Chojnacki, and Z. Bojar: Intermetallics, 2011, vol. 19(10), pp. 1555–62. https://doi.org/10.1016/j.intermet.2011.05.029.

    Article  CAS  Google Scholar 

  11. S. Mehrabani, A.T. Tabrizi, H. Aghajani, and H. Pourbagheri: Int. J. Self-Propagating High-Temp. Synth., 2020, vol. 29(3), pp. 167–72. https://doi.org/10.3103/S1061386220030061.

    Article  CAS  Google Scholar 

  12. J.J. Moore and H.J. Feng: Prog. Mater. Sci., 1995, vol. 39(4–5), pp. 243–73. https://doi.org/10.1016/0079-6425(94)00011-5.

    Article  CAS  Google Scholar 

  13. S. Arabpour Javadi, S. Nozohour Hokmabadi, A. Taghizadeh Tabrizi, and H. Aghajani: Powder Metall., 2021, vol. 64(5), pp. 341–50. https://doi.org/10.1080/00325899.2021.1906564.

    Article  CAS  Google Scholar 

  14. M. Busurina, A.E. Sychev, I.D. Kovalev, A.V. Karpov, and N.V. Sachkova: Combust. Explos. Shock Waves, 2020, vol. 56(3), pp. 317–23. https://doi.org/10.1134/S0010508220030089.

    Article  Google Scholar 

  15. Z. Deng, H. Yin, C. Zhang, G. Zhang, T. Zhang, Z. Liu, H. Wang, and X. Qu: Prog. Nat. Sci.-Mater., 2019, vol. 29(4), pp. 425–31. https://doi.org/10.1016/j.pnsc.2019.04.007.

    Article  CAS  Google Scholar 

  16. A. Hibino and R. Watanabe: Nippon Kinzoku Gakkaishi/ J. Jpn. Inst., 1991, vol. 55(11), pp. 1256–62. https://doi.org/10.2320/**stmet1952.55.11_1256.

    Article  CAS  Google Scholar 

  17. H. Yi, A. Petric, and J.J. Moore: J. Mater. Sci., 1992, vol. 27(24), pp. 6797–6806. https://doi.org/10.1007/BF01165971.

    Article  CAS  Google Scholar 

  18. V. Sanin, M.R. Filonov, V.I. Yukhvid, Yu.A. Anikin, and D.M. Ikornikov: Russ. J. Non-Ferr. Met., 2020, vol. 61(1), pp. 119–25. https://doi.org/10.3103/S1067821220010137.

    Article  Google Scholar 

  19. H. Okamoto and T.B. Massalski: Binary Alloy Phase Diagrams, ASM International, Materials Park, 1990. https://doi.org/10.31399/asm.hb.v03.9781627081634.

    Book  Google Scholar 

  20. A. Hibino, Y. Sumiyoshi, and K. Hayashi: J. Jpn. Soc. Powder Powder Metall., 2011, vol. 58, pp. 625–32. https://doi.org/10.2497/jjspm.58.625.

    Article  CAS  Google Scholar 

  21. H.-W. Liu and K.P. Plucknett: Adv. Powder Technol., 2017, vol. 28(1), pp. 314–23. https://doi.org/10.1016/j.apt.2016.10.001.

    Article  CAS  Google Scholar 

  22. U. Kattner, J.-C. Lin, and Y.A. Chang: Metall. Trans. A, 1992, vol. 23, pp. 2081–90. https://doi.org/10.1007/BF02646001.

    Article  Google Scholar 

  23. P. Wang, Z. Chen, C. Hu, B. Li, J. Lin, and Q. Liu: J. Mater. Res. Technol., 2020, vol. 9(5), pp. 11813–25. https://doi.org/10.1016/j.jmrt.2020.08.070.

    Article  CAS  Google Scholar 

  24. R. Khoshhal, M. Soltanieh, and M. Mirjalili: Iran. J. Mater. Sci. Eng., 2010, vol. 7(1), pp. 24–31.

    CAS  Google Scholar 

  25. S.-M. Liang and R. Schmid-Fetzer: Calphad, 2015, vol. 51, pp. 252–60. https://doi.org/10.1016/j.calphad.2015.10.004.

    Article  CAS  Google Scholar 

  26. P. Canale and C. Servant: Z. Met., 2002, vol. 93(4), pp. 273–76. https://doi.org/10.3139/146.020273.

    Article  CAS  Google Scholar 

  27. D. Kumar, M. Singh, and A.K. Singh: AIP Conference Proceedings, AIP Publishing LLC, 2018. https://doi.org/10.1063/1.5032520.

    Book  Google Scholar 

  28. F.R. Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen, Cohesion in metals: Transition Metal Alloys, vol. 1, North Holland, Amsterdam, 1988.

    Google Scholar 

  29. W. Oelsen and W. Middel: Verlag Stahleisen, 1937.

  30. R. Sinvhal and P.R. Khangaonkar: Trans. Indian Inst. Met., 1967, vol. 20, pp. 107–10.

    CAS  Google Scholar 

  31. O. Kubaschewski and G. Heymer: J. Chem. Soc. Faraday Trans., 1960, vol. 56, pp. 473–78. https://doi.org/10.1039/TF9605600473.

    Article  CAS  Google Scholar 

  32. J. Hair and D.B. Downie: Faraday Symposia of the Chemical Society, Royal Society of Chemistry, London, 1973. https://doi.org/10.1039/FS9730800056.

    Book  Google Scholar 

  33. V. Witusiewicz, U. Hecht, S.G. Fries, and S. Rex: J. Alloys Compd., 2004, vol. 385(1–2), pp. 133–43. https://doi.org/10.1016/j.jallcom.2004.04.126.

    Article  CAS  Google Scholar 

  34. M.A. Majid and R. Yousefi: Solid State Sci., 2011, vol. 13(1), pp. 251–56. https://doi.org/10.1016/j.solidstatesciences.2010.11.024.

    Article  CAS  Google Scholar 

  35. Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, and B.S. Kumari: World J. Nano Sci. Eng., 2014, https://doi.org/10.4236/wjnse.2014.41004.

    Article  Google Scholar 

  36. C. Suryanarayana and M. Grant Norton: X-ray Diffraction, Springer, New York, 1998, pp. 63–94.

    Book  Google Scholar 

  37. A. Mishra, H. Roy, A. Lohar, S. Samanta, S. Tiwari, and K. Dutta: Mater. Sci. Eng., 2015, https://doi.org/10.1088/1757-899X/75/1/012001.

    Article  Google Scholar 

Download references

Funding

This work was not granted or funded (financially, non-financially, directly, or indirectly) by any company or institution.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Soltanieh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarzadeh, M., Soltanieh, M. & Khoshhal, R. The Influence of Cu on Combustion Synthesis Mechanism of Ti–Al Intermetallic Compounds Produced From Ti and Al Elemental Powders. Metall Mater Trans A 54, 3537–3549 (2023). https://doi.org/10.1007/s11661-023-07111-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07111-y

Navigation