Log in

Marangoni-Convection-Driven Bubble Behavior and Microstructural Evolution of Sn-3.5Ag/Sn-17Bi-0.5Cu (Wt Pct) Alloy Solidified on Cu Substrate Under Space Microgravity Condition

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Marangoni convection significantly affects the solidification structure as it controls the bubble behavior and mass transfer in the melt. Sn-3.5Ag/Sn-17Bi-0.5Cu (wt pct) alloy with different surface tension gradients was fabricated and solidified on a Cu ring substrate under space microgravity condition (SJ-10 satellite) to study the Marangoni convection formation mechanism. The pore and element distributions in the solidified alloy and surface tension gradient in the melt were analyzed. The differences between the microstructures of alloys solidified under microgravity and normal gravity conditions were also investigated. The surface tension gradient induced by Bi concentration difference resulted in the formation of Marangoni convection from the right to left of the melt under the microgravity condition. In the left (Bi-scarce) part of the melt, Marangoni convection induced by the Cu concentration difference flowed from outside to inside. Driven by bubble-agitation convection, Cu mainly migrated from the substrate to the right part of the melt. Therefore, dendrite-like CuxSny was distributed along a gradient. Under the normal gravity condition, significant gravity-induced convection resulted in an even distribution of Bi and Cu, which decreased the contact angle and reduced the surface tension, thus promoting nucleation of the alloy. Therefore, fine dendrite-like CuxSny with larger number density were uniformly distributed in the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Ruan, Q.Q. Wang, and S. Chang, B. Wei: Acta Mater., 2017, vol. 141, pp. 456-465.

    Article  CAS  Google Scholar 

  2. K. L. Scotti, E. E. Northard, A. Plunk, B. C. Tappan, and D. C. Dunand: Acta Mater., 2017, vol. 124, pp. 608-619.

    Article  CAS  Google Scholar 

  3. Z. Lu, Y. Fautrelle, and X. Li: Metall. Mater. Trans. A, 2018, vol. 49, pp. 4383-4388.

    Article  Google Scholar 

  4. C.R. Heiple, and J.R. Roper: Weld. J., 1982, vol. 61, pp. 97-102.

    Google Scholar 

  5. L. G. Napolitano: Science, 1984, vol. 225, pp. 197-198.

    Article  CAS  Google Scholar 

  6. T. Yano, K. Nishino, H. Kawamura, I. Ueno, S. Matsumoto, M. Ohnishi, and M. Sakurai: Exp. Fluids, 2012, vol. 53, pp. 9-20.

    Article  CAS  Google Scholar 

  7. X. Zou, D. Zhao, J. Sun, C. Wang, and H. Matsuura: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 481-489.

    Article  Google Scholar 

  8. S. Sun, Q. Hu, W. Lu, Z. Ding, M. **a, and J. Li: Metall. Mater. Trans. A, 2018 vol. 49, pp. 4429-4434.

    Article  Google Scholar 

  9. Q. Wang, X. Zou, H. Matsuura, and C. Wang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 18-22.

    Article  Google Scholar 

  10. W. Lu, S. Zhang, W. Zhang, Q. Hu, J. Yu, Y. Fu, and J. Li: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2701-2705.

    Article  Google Scholar 

  11. F. Dai, Y. Wu, W. Wang, and B. Wei: Metall. Mater. Trans. A, 2018, vol. 49, pp. 5478-5487.

    Article  Google Scholar 

  12. L. E. Scriven, and C. V. Sternling: Nature, 1960, vol. 187, pp. 186-188.

    Article  Google Scholar 

  13. H.E. Jeffes: Physical chemistry of process metallurgy, Institution of Mining and Metallurgy, Bei**g, 1974.

    Google Scholar 

  14. F. Czerwinski: Metall. Mater. Trans. B, 2017, vol. 48, pp. 367-393.

    Article  Google Scholar 

  15. H. Fujii, N. Sogabe, and K. Nogi: Materials Science Forum, 2006, vol. 521, pp. 301-304.

    Article  Google Scholar 

  16. L. Zang, Z. Yuan, H. Xu, and B. Xu: Appl. Surf. Sci., 2011, vol. 257 (11), pp. 4877-4884.

    Article  CAS  Google Scholar 

  17. B. Xu, Z. Yuan, and Y. Wu: Colloids Surf. A, 2014, vol. 441(1), pp. 217-225.

    Article  CAS  Google Scholar 

  18. L. Zang, Z. Yuan, Y. Zhu, B. Xu, H. Matsuura, and F. Tsukihashi: Colloids Surf. A, 2012, vol. 414, pp. 57-65.

    Article  CAS  Google Scholar 

  19. Z. Zhang, X. Hu, X. Jiang, and Y. Li: Metall. Mater. Trans. A, 2019, vol. 50, pp. 480-492.

    Article  Google Scholar 

  20. P. Sungkhaphaitoon, and T. Plookphol: Metall. Mater. Trans. A, 2018, vol. 49, pp. 652-660.

    Article  Google Scholar 

  21. B. Xu, J. Chen, Z. Yuan, L. Zhang, L. Zhang, and Y. Wu: Microgravity Sci. Technol., 2016, vol. 28, pp. 115-122.

    Article  CAS  Google Scholar 

  22. Q. Kang, and W. Hu: Bulletin of the Chinese Academy of Sciences, 2016, vol. 31(5), pp. 574-580.

    Google Scholar 

  23. W. Hu, J. Zhao, M. Long, X. Zhang, Q. Liu, M. Hou, Q. Kang, Y. Wang, S. Xu, W. Kong, H. Zhang, S. Wang, Y. Sun, H. Hang, Y. Huang, W. Cai, Y. Zhao, J. Dai, H. Zheng, E. Duan, and J. Wang: Microgravity Sci. Technol., 2014, vol. 26(3), pp. 159-169.

    Article  Google Scholar 

  24. W. Hu, B. Tang, and Q. Kang: Aeron Aero Open Access J1, 2017, pp. 125-127.

    Google Scholar 

  25. Y. Wang, H. Zhao, Y. Zhang, J. Qiu, X. Mao, and X. Wang: Aerospace China, 2016, vol. 4, pp. 3-13.

    Google Scholar 

  26. X. Yu, M. Wang, Z. Wang, X. Gong, and Z. Guo: Appl. Surf. Sci., 2016, vol. 360, pp. 502-509.

    Article  CAS  Google Scholar 

  27. X. Yu, M. Wang, Z. Wang, X. Gong, and Z. Guo: Electrochim. Acta, 2016, vol. 211, pp. 900-910.

    Article  CAS  Google Scholar 

  28. Z. Yuan, W. Huang, and K. Mukai: Appl. Phys. A, 2004, vol. 78, pp. 617-622.

    Article  CAS  Google Scholar 

  29. Z. Yuan, and K. Mukai: J. Colloid Interface Sci., 2004, vol. 270(1), 140-145.

    Article  CAS  Google Scholar 

  30. X. Yu, M. Wang, Z. Wang, X. Gong, and Z. Guo: J. Phys. Chem. C, 2017, vol. 121, pp. 16792-16802.

    Article  CAS  Google Scholar 

  31. Y. Ruan, Q.Q. Wang, S. Chang, and B. Wei: Acta Mater., 1998, vol. 46, pp. 4405-4413.

    Article  Google Scholar 

  32. H. Jiang, J. He, and J. Zhao: Sci. Rep., 2015, 5:12680. https://doi.org/10.1038/srep12680

    Article  CAS  Google Scholar 

  33. N. D. Nikolic, K. I. Popov, J Lj, and M. G. Pavlovic: J. Electroanal. Chem., 2006, vol. 588, pp. 88-98.

    Article  CAS  Google Scholar 

  34. T. Cool, and P.W. Voorhees: Acta Mater., 2017, vol. 127, pp. 359-367.

    Article  CAS  Google Scholar 

  35. H. Jiang, Q. Sun, L. Zhao, and J. Zhao: J. Alloy Compd., 2018, vol. 748, pp. 774-782.

    Article  CAS  Google Scholar 

  36. Q. Sun, H. Jiang, J. Zhao, and J. He: Acta Mater., 2017, vol. 129, pp. 321-330.

    Article  CAS  Google Scholar 

  37. E. Yablonovitch, and T. Gmitter: J. Electrochem. Soc., 1984, vol. 131, pp. 2625-2630.

    Article  CAS  Google Scholar 

  38. Z. Q. Cui, Principles of Metallography and heat treatment, Harbin Institute of Technology Press, Harbin, 2008.

    Google Scholar 

  39. W. Yao, C. Yang, X. Han, M. Chen, B. Wei, and Z. Guo: Acta Phys. Sin., 2003, vol. 52, pp. 448-452.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grant Nos. U1738101 and 51804023), Fundamental Research Funds for the Central Universities (Grant Nos. FRF-TP-18-007A1 and FRF-MP-18-007), and China Postdoctoral Science Foundation (Grant Nos. 2019M650489 and 2019T120046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **angtao Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 21, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Wang, R. & Yu, X. Marangoni-Convection-Driven Bubble Behavior and Microstructural Evolution of Sn-3.5Ag/Sn-17Bi-0.5Cu (Wt Pct) Alloy Solidified on Cu Substrate Under Space Microgravity Condition. Metall Mater Trans A 50, 5210–5220 (2019). https://doi.org/10.1007/s11661-019-05424-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05424-5

Navigation