Log in

Microstructural Evolution and Mechanical Properties of Nickel-Base Superalloy Brazed Joints Using a MPCA Filler

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new multi-principal-component alloy (MPCA) filler metal with the composition Fe5Co20Ni20Mn35Cu20 was designed for brazing Ni-base Alloy 600 (Ni-Cr-Fe). Thermodynamic calculations, including atomic size difference, mixing entropy and enthalpy, valence electron concentration, and phase diagram calculations were used to optimize the composition of the MPCA filler material, targeting a face-centered cubic (FCC) crystalline structure and a melting point appropriate for brazing. An X-ray diffraction measurement confirmed the presence of an FCC structure in the as-cast MPCA, and differential thermal analysis (DTA) results demonstrated its melting range to be 1080-1150 °C. The MPCA also exhibited mechanical properties worthy of a brazing filler candidate, with a true compressive yield stress of 286 MPa, an ultimate compressive strength of 591 MPa, and a fracture strain of 106 pct. The optimum brazing temperature was determined to be 1200 °C through a wettability test on the Alloy 600 base material, at which the MPCA exhibited a low wetting angle of 14 deg and optimal spreading behavior. The MPCA plate was cold rolled into 300 μm foils for brazing. For the full range of brazing times studied (15 to 120 minutes), no microstructural defects were observed, and electron backscatter diffraction (EBSD) results showed equiaxed grains present in the solidification microstructure of the filler material. Using data from energy-dispersive spectroscopy (EDS), a kinetic analysis was performed for the constituent elements in the MPCA. It was determined that although Mn was the fastest diffusing of the elements that diffused from the MPCA into the Alloy 600, the diffusion coefficients for all of these elements were on the same order of magnitude. This result was indicative of the sluggish diffusion theory associated with MPCAs. The effect of brazing time on the shear strength of the brazed joint was evaluated. A maximum shear strength of 530 MPa was achieved at a brazing time of 90 minutes. As brazing time increased up to 90 minutes, the increasing interdiffusion distance facilitated a stronger metallurgical bond. However, beyond 90 minutes, the formation of brittle Cr2Mn3 and CrMn3 intermetallic compounds at the grain boundaries within the filler foil led to a lower shear strength and brittle fracture in the joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. 1. R. Kennedy, Superalloys 2005, vol. 718, pp. 1-14.

    Google Scholar 

  2. B. Muralidharan, V. Shankar, and T. Gill: Weldability of Inconel 718-A review, Indira Gandhi Centre for Atomic Research, 1996.

  3. 3. J. P. Collier, S. H. Wong, J. K. Tien and J. C. Phillips, Metallurgical and Materials Transactions A 1988, vol. 19, pp. 1657-1666.

    Article  CAS  Google Scholar 

  4. 4. D. Furrer and H. Fecht, JOM 1999, vol. 51, pp. 14-17.

    Article  CAS  Google Scholar 

  5. 5. A. Pineau and S. D. Antolovich, Engineering Failure Analysis 2009, vol. 16, pp. 2668-2697.

    Article  CAS  Google Scholar 

  6. 6. T. M. Pollock and S. Tin, Journal of Propulsion and Power 2006, vol. 22, pp. 361-374.

    Article  CAS  Google Scholar 

  7. D. Duvall, W. Owczarski, D. Paulonis, and W. King, Weld. J., 1972, vol. 51, pp. 41S-49S.

    Google Scholar 

  8. G. Q. Chen, B. G. Zhang, T. M. Lü and J. C. Feng, Transactions of Nonferrous Metals Society of China 2013, vol. 23, pp. 1971-1976.

    Article  CAS  Google Scholar 

  9. 9. D. Y. Kim, J. H. Hwang, K. S. Kim and J. G. Youn, Transaction of ASME, Indianapolis, Indiana, United States 1999.

    Google Scholar 

  10. 10. G. Ma, D. Wu, F. Niu and H. Zou, Optics and Lasers in Engineering 2015, vol. 72, pp. 39-46.

    Article  Google Scholar 

  11. 11. M. Montazeri, F. M. Ghaini and O. Ojo, Weld. J 2013, vol. 92, pp. 258s-264s.

    Google Scholar 

  12. A.S. Suharno, R.E. Buntario and D. Widagdo, et al.: Glob. J. Res. Eng., 2012, vol. 12, pp. 22-28.

    Google Scholar 

  13. 13. O. Ojo, N. Richards and M. Chaturvedi, Scripta Materialia 2004, vol. 50, pp. 641-646.

    Article  CAS  Google Scholar 

  14. 14. M. Qian and J. Lippold, Acta Mater 2003, vol. 51, pp. 3351-3361.

    Article  CAS  Google Scholar 

  15. J. C. Lippold, S. D. Kiser and J. N. DuPont: Welding Metallurgy and Weldability of Nickel-Base Alloys. (Wiley, Hoboken, 2011).

    Google Scholar 

  16. K.H. Holko and T.J. Moore: Report No. NASA TN D-6493, NASA, Lewis Research Center, NASA, Cleveland, OH, 1971.

  17. 17. A. Shapiro and A. Rabinkin, Welding Journal 2003, vol. 82, pp. 36-43.

    CAS  Google Scholar 

  18. R. D. Nascimento, A. Martinelli and A. Buschinelli: Cerâmica 2003, vol. 49, pp. 178-198.

    Article  Google Scholar 

  19. 19. A. Rabinkin, Science and Technology of Welding and Joining 2004, vol. 9, pp. 181-199.

    Article  CAS  Google Scholar 

  20. D. M. Jacobson and G. Humpston: Principles of Brazing. (ASM International, Materials Park, 2005).

    Google Scholar 

  21. 21. M. Pouranvari, A. Ekrami and A. Kokabi, Materials Science and Technology 2013, vol. 29, pp. 980-984.

    Article  CAS  Google Scholar 

  22. 22. M. Mosallaee, A. Ekrami, K. Ohsasa and K. Matsuura, Metallurgical and Materials Transactions A 2008, vol. 39, pp. 2389-2402.

    Article  Google Scholar 

  23. R. M. Evans and R. E. Monroe: Welding and Brazing of Nickel and Nickel-Base Alloys: A Report (Technology Utilization Office, National Aeronautics and Space Administration;[for sale by the Supt. of Docs., US Govt. Print. Off.], 1972).

  24. M. Chaturvedi, O. Ojo, and N. Richards, Adv. Technol. Mater. Mater. Process. J. (ATM) 2004, vol. 6, p. 206.

    CAS  Google Scholar 

  25. 25. A. Khorram, M. Ghoreishi, M. Torkamany and M. Bali, Optics & Laser Technology 2014, vol. 56, pp. 443-450.

    Article  CAS  Google Scholar 

  26. W. M. Miglietti and R. C. Pennefather: in ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, American Society of Mechanical Engineers, 1996, pp. V005T12A010–V005T12A010.

  27. 27. A. Khorram, O. Fakhraei and M. Torkamany, The International Journal of Advanced Manufacturing Technology 2017, vol. 88, pp. 2075-2084.

    Article  Google Scholar 

  28. 28. M. Schwartz, Gold Bulletin 1975, vol. 8, pp. 102-110.

    Article  CAS  Google Scholar 

  29. B. S. Murty, J. W. Yeh and S. Ranganathan: High-Entropy Alloys (Butterworth-Heinemann, Oxford, 2014).

    Google Scholar 

  30. 30. B. Cantor, I. Chang, P. Knight and A. Vincent, Materials Science and Engineering: A 2004, vol. 375, pp. 213-218.

    Article  Google Scholar 

  31. 31. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau and S. Y. Chang, Advanced Engineering Materials 2004, vol. 6, pp. 299-303.

    Article  CAS  Google Scholar 

  32. 32. D. Miracle and O. Senkov, Acta Mater 2017, vol. 122, pp. 448-511.

    Article  CAS  Google Scholar 

  33. 33. X. Yang and Y. Zhang, Materials Chemistry and Physics 2012, vol. 132, pp. 233-238.

    Article  CAS  Google Scholar 

  34. 34. W. Liu, Y. Wu, J. He, T. Nieh and Z. Lu, Scripta Materialia 2013, vol. 68, pp. 526-529.

    Article  CAS  Google Scholar 

  35. 35. C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau and S.-Y. Chang, Metallurgical and Materials Transactions A 2005, vol. 36, pp. 881-893.

    Article  CAS  Google Scholar 

  36. 36. C. J. Tong, M. R. Chen, J. W. Yeh, S. J. Lin, S. K. Chen, T. T. Shun and S. Y. Chang, Metallurgical and Materials Transactions A 2005, vol. 36, pp. 1263-1271.

    Article  CAS  Google Scholar 

  37. 37. C. W. Tsai, Y. L. Chen, M. H. Tsai, J. W. Yeh, T. T. Shun and S. K. Chen, Journal of Alloys and compounds 2009, vol. 486, pp. 427-435.

    Article  CAS  Google Scholar 

  38. 38. L. H. Wen, H. C. Kou, J. S. Li, H. Chang, X. Y. Xue and L. Zhou, Intermetallics 2009, vol. 17, pp. 266-269.

    Article  CAS  Google Scholar 

  39. 39. C. Y. Hsu, C. C. Juan, W. R. Wang, T. S. Sheu, J. W. Yeh and S. K. Chen, Materials Science and Engineering: A 2011, vol. 528, pp. 3581-3588.

    Article  Google Scholar 

  40. 40. W. Woo, E.-W. Huang, J.-W. Yeh, H. Choo, C. Lee and S.-Y. Tu, Intermetallics 2015, vol. 62, pp. 1-6.

    Article  CAS  Google Scholar 

  41. 41. M. H. Chuang, M. H. Tsai, W. R. Wang, S. J. Lin and J. W. Yeh, Acta Mater 2011, vol. 59, pp. 6308-6317.

    Article  CAS  Google Scholar 

  42. 42. Y. L. Chou, J. W. Yeh and H. C. Shih, Corrosion Science 2010, vol. 52, pp. 2571-2581.

    Article  CAS  Google Scholar 

  43. 43. H. T. Hsueh, W. J. Shen, M. H. Tsai and J. W. Yeh, Surface and Coatings Technology 2012, vol. 206, pp. 4106-4112.

    Article  CAS  Google Scholar 

  44. 44. Z. Tang, L. Huang, W. He and P. K. Liaw, Entropy 2014, vol. 16, pp. 895-911.

    Article  Google Scholar 

  45. 45. T. Butler, J. Alfano, R. Martens and M. Weaver, Jom 2015, vol. 67, pp. 246-259.

    Article  CAS  Google Scholar 

  46. 46. T. M. Butler and M. L. Weaver, Journal of Alloys and Compounds 2016, vol. 674, pp. 229-244.

    Article  CAS  Google Scholar 

  47. Y. Zhang, T. Zuo, Y. Cheng and P. K. Liaw, Scientific Reports 2013, vol. 3, p. 1451.

    Article  Google Scholar 

  48. 48. O. N. Senkov, G. B. Wilks, J. M. Scott and D. B. Miracle, Intermetallics 2011, vol. 19, pp. 698-706.

    Article  CAS  Google Scholar 

  49. 49. K. Y. Tsai, M. H. Tsai and J. W. Yeh, Acta Mater 2013, vol. 61, pp. 4887-4897.

    Article  CAS  Google Scholar 

  50. J.W. Yeh, Eur. J. Control 2006, vol. 31, pp. 633-648.

    CAS  Google Scholar 

  51. 51. W. H. Liu, Y. Wu, J. Y. He, T. G. Nieh and Z. P. Lu, Scripta Mater 2013, vol. 68, pp. 526-529.

    Article  CAS  Google Scholar 

  52. 52. D. L. Beke and G. Erdelyi, Materials Letters 2016, vol. 164, pp. 111-113.

    Article  CAS  Google Scholar 

  53. 53. J. Dabrowa, W. Kucza, G. Cieslak, T. Kulik, M. Danielewski and J. W. Yeh, J Alloy Compd 2016, vol. 674, pp. 455-462.

    Article  CAS  Google Scholar 

  54. 54. K. **, C. Zhang, F. Zhang and H. Bei, Materials Research Letters 2018, vol. 6, pp. 293-299.

    Article  CAS  Google Scholar 

  55. 55. A. Takeuchi and A. Inoue, Materials Transactions, JIM 2000, vol. 41, pp. 1372-1378.

    CAS  Google Scholar 

  56. 56. A. Takeuchi and A. Inoue, Materials Transactions 2005, vol. 46, pp. 2817-2829.

    Article  CAS  Google Scholar 

  57. 57. F. R. Boer and D. G. Perrifor: Cohesion in Metals. (Elsevier Science Publisher B.V., Netherlands, 1988).

    Google Scholar 

  58. 58. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen and P. K. Liaw, Advanced Engineering Materials 2008, vol. 10, pp. 534-538.

    Article  CAS  Google Scholar 

  59. 59. S. Guo, C. Ng, J. Lu and C. Liu, Journal of applied physics 2011, vol. 109, pp. 103505-1-103505-5.

    Google Scholar 

  60. 60. D. Bridges, S. Zhang, S. Lang, M. Gao, Z. Yu, Z. Feng and A. Hu, Mater Lett 2018, vol. 215, pp. 11-14.

    Article  CAS  Google Scholar 

  61. AWS Standard C3.2: Standard Method for Evaluating the Strength of Brazed Joints, 2008.

  62. Special Metals Huntington Alloys Corporation, Certified Materials Test Report: Inconel Alloy 600, EAF-AOD-Electroslag Remelted, Hot Rolled Plate, Descaled, Annealed, TA, Chen International, Inc.

  63. S. D. Nelson: Multiphase Wide Gap Braze Alloys for the Repair of Nickel-Base Superalloy Turbine Components: Development and Characterization. (Colorado School of Mines, Golden, 2013).

    Google Scholar 

  64. 64. C. Y. Su, C. P. Chou, B. C. Wu and W. C. Lih, Materials Science and Technology 1999, vol. 15, pp. 316-322.

    Article  CAS  Google Scholar 

  65. 65. S. Kou: Welding Metallurgy. 2 ed. (Wiley, Hoboken, NJ, 2003).

    Google Scholar 

  66. 66. W. F. Gale and D. A. Butts, Science and Technology of Welding and Joining 2004, vol. 9, pp. 283-300.

    Article  CAS  Google Scholar 

  67. 67. F. J. A. DenBroeder, Scripta Metallurgica 1969, vol. 3, pp. 321-326.

    Article  Google Scholar 

  68. 68. C. L. Fu, R. Reed, A. Janotti and M. Krcmar, Superalloys 2004, vol. 2004, pp. 867-876.

    Article  Google Scholar 

  69. 69. T. Zaharinie, F. Yusof, M. Hamdi, T. Ariga and R. Moshwan, The International Journal of Advanced Manufacturing Technology 2014, vol. 73, pp. 1133-1140.

    Article  Google Scholar 

  70. 70. X. Zhou, Y. Wang, J. Zhou, G. Qu and Z. Bao, Acta Metallurca Sinica-Chinese Edition 2007, vol. 43, pp. 433-438.

    CAS  Google Scholar 

  71. 71. K. J. Laws, C. Crosby, A. Sridhar, P. Conway, L. S. Koloadin, M. Zhao, S. Aron-Dine and L. C. Bassman, Journal of Alloys and Compounds 2015, vol. 650, pp. 949-961.

    Article  CAS  Google Scholar 

  72. 72. V. Bazhenov, Russian Journal of Non-Ferrous Metals 2013, vol. 54, pp. 171-177.

    Article  Google Scholar 

  73. 73. J. S. Shyu and T. H. Chuang, Journal of Materials Engineering and Performance 1996, vol. 5, pp. 84-88.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenzhen Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 21, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Schneiderman, B., Gilbert, S.M. et al. Microstructural Evolution and Mechanical Properties of Nickel-Base Superalloy Brazed Joints Using a MPCA Filler. Metall Mater Trans A 50, 5117–5127 (2019). https://doi.org/10.1007/s11661-019-05386-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05386-8

Navigation