Log in

Rationalization of Short-Term Creep Test Data and Prediction of Long-Term Creep Strengths of a Fe-20Cr-25Ni (Wt Pct) Austenitic Stainless Steel (Alloy 709)

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new creep model is applied to rationalize the stress and temperature dependences of minimum creep rate for a Fe-20Cr-25Ni (wt pct) austenitic stainless steel (Alloy 709). The creep activation energy determined on the basis of this model does not depend on stress and the stress exponent not on temperature. Consequently, it can be used together with the Mankman–Grant relationship to predict the long-term creep strengths and lifetimes at different temperatures using short-term creep rupture data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. A.S. Alomari, N. Kumar, and K.L. Murty: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 641-54.

    Article  Google Scholar 

  2. S. Upadhayay, H. Li, P. Bowen, and A. Rabiei: Mater. Sci. Eng. A, 2018, vol. 733, pp. 338–49.

    Article  Google Scholar 

  3. K.L. Murty and I. Charit: J. Nucl. Mater., 2008, vol. 383, pp. 189-95.

    Article  Google Scholar 

  4. M. Song, C. Sun, Z. Fan, Y. Chen, R. Zhu, K.Y. Yu, K. T. Hartwig, H. Wang, and X. Zhang: Acta Mater., 2016, vol. 112, pp. 361-77.

    Article  Google Scholar 

  5. J.W. Sanders, M. Dadfarnia, J.F. Stubbins, and P. Sofronis: J. Mech. Phys. Solids, 2017, vol. 98, pp. 49-62.

    Article  Google Scholar 

  6. A.S. Alomari, N. Kumar, and K.L. Murty: Mater. Sci. Eng. A, 2018, vol. 729, pp. 157–60.

    Article  Google Scholar 

  7. M. Yang, Q. Wang, X.L Song, J. Jia, and Z.D. **ang: Int. J. Mater. Res., 2016, vol. 107, pp. 133-38.

    Article  Google Scholar 

  8. A.M. Brown and M.F. Ashby: Scri. Mater., 1980, vol. 14, pp. 1297-1302.

    Google Scholar 

  9. T. M. Whittaker and B. Wilshire: Metall. Mater. Trans. A, 2013, vol. 44A, pp. S136-53.

    Article  Google Scholar 

  10. Q. Wang, M. Yang, X.L Song, J. Jia, and Z.D. **ang: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3479-87.

    Article  Google Scholar 

  11. Y.R. Zhao, H.P. Yao, X.L. Song, J. Jia, and Z.D. **ang: J. Alloys Comp., 2017, vol. 726, pp. 1246-54.

    Article  Google Scholar 

  12. J. Gao, P.C. Yi, X.L. Song, J. Jia, Z.D. **ang: Mater. High Temp., 2019, vol. 36, pp. 304-13.

    Article  Google Scholar 

  13. Y. Zhao, H. Yao, X. Song, J. Jia, and Z. **ang: Met. Mater. Int., 2018, vol. 24, pp. 51-59.

    Article  Google Scholar 

  14. H.P. Yao, Y.R. Zhao, X.L. Song, J. Jia, and Z.D. **ang: Eur. J. Mech. A Solids, 2019, vol. 73, pp. 57–66.

    Article  Google Scholar 

  15. F.C. Monkman and N.J. Grant, Proc. ASTM, 1956, vol. 56, pp. 593-620.

    Google Scholar 

  16. E.M. Haney, F. Dalle, M. Sauzay, L. Vincent, I. Tournie, L. Allais, and B. Fournier: Mater. Sci. Eng. A., 2009, vol. 510–511, pp. 99–103.

    Article  Google Scholar 

  17. A.K. Ray, K. Diwakar, B.N. Prasad, Y.N. Tiwari, R.N. Ghosh, and J.D. Whittenberger: Mater. Sci. Eng. A, 2007, vol. 454–455, pp. 124–31.

    Article  Google Scholar 

  18. H.K. Danielsen, P.E. Di Nunzio, and J. Hald: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2445–52.

    Article  Google Scholar 

  19. H.K. Danielsen and J. Hald: Energy Mater., 2006, vol. 1, pp. 49-57.

    Article  Google Scholar 

  20. T. Soumail and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2005, vol. 36, pp. 23-34.

    Article  Google Scholar 

Download references

This research is supported by the Ministry of Science and Technology of the People’s Republic of China (2017YFB0305201) and by the State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology (2018QN11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. D. **ang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 8, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, P.C., Jiang, C.C., Dong, Z. et al. Rationalization of Short-Term Creep Test Data and Prediction of Long-Term Creep Strengths of a Fe-20Cr-25Ni (Wt Pct) Austenitic Stainless Steel (Alloy 709). Metall Mater Trans A 50, 3452–3457 (2019). https://doi.org/10.1007/s11661-019-05292-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05292-z

Navigation