Log in

Mechanical Properties Involved in the Micro-forming of Ultra-thin Stainless Steel Sheets

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The objective of this paper is to characterize the mechanical behavior of an ultra-thin stainless steel, of 0.15-mm thickness, that is commonly used in the manufacturing of miniature connectors. The main focus is the relationship between some microstructural features, like grain size and surface roughness, and the macroscopic mechanical behavior investigated in uniaxial tension and simple shear. In tension, adaptations to the very small sheet thickness, in order to hold the specimen under the grips, are presented. Yield stress, initial elastic modulus, and evolution of the loading–unloading slope with plastic deformation were evaluated. Moreover, the kinematic contribution to the hardening was characterized by monotonic and cyclic simple shear test and reproduced by a mixed hardening law implemented in Abaqus finite element code. Then, the evolution of surface roughness with plastic strain, both in tension and simple shear, was analyzed. It was shown that in the case of an ultra-thin sheet, the stress levels, calculated either from an average thickness or when considering the effect of the surface roughness, exhibit a significant difference. Finally, the influence of surface roughness on the fracture of a tensile specimen was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Enge, CIRP Ann.: Manuf. Technol. 50, 445–62 (2001)

    Article  Google Scholar 

  2. T. Connolley, P.E. Mchugh, M. Bruzzi, Fatigue Fract. Eng. Mater. Struct. 28, 1119–52 (2005)

    Article  Google Scholar 

  3. U. Engel, R. Eckstein, J. Mater. Process. Technol. 125–126, 35–44 (2002)

    Article  Google Scholar 

  4. G.T. Gau, P.H. Chen, H. Gu, R.S. Lee, J. Mater. Process. Technol. 213, 376–82 (2013)

    Article  Google Scholar 

  5. Nisshin Steel—Nisshin Steel Quality Products: Stainless Foil

  6. E.M. Costache, N. Nanu, B. Chirita, G. Brabie, Int. J. Mech. Sci. 69, 125–140 (2013)

    Article  Google Scholar 

  7. L. Peng, P. Hu, X. Lai, D. Mei, J. Ni, Mater. Des. 30, 783–790 (2009)

    Article  Google Scholar 

  8. Lester Metals LLC. Stainless Steel Products. http://www.lestermetals.com

  9. Alufoil (EAFA) European Aluminum Foil Association. http://www.alufoil.org/facts.html

  10. H. Hoffmann, S. Hong, CIRP Ann.: Manuf. Technol. 55, 263–266 (2006)

    Article  Google Scholar 

  11. T. Furushima, H. Tsunezaki, K. Manabe, S. Alexsandrov, Int. J. Mach. Tool Manuf. 76, 34–48 (2014)

    Article  Google Scholar 

  12. T. Furushima, H. Tsunezaki, K. Manabe, and S. Alexsandrov: 13th International Conference on Fracture, Bei**g, China. 2013

  13. S. Miyazaki, K. Shibata, H. Fujita, Acta Metall. 27, 855–862 (1979)

    Article  Google Scholar 

  14. F. Vollertsen, Micro Metal Forming (Springer, Berlin, 2013)

    Book  Google Scholar 

  15. N. Hansen, Acta Metall. 25, 863–869 (1977)

    Article  Google Scholar 

  16. J. Xu, B. Guo, D. Shan, M. Li, Z. Wang, Mater. Trans. 54, 984–989 (2013)

    Article  Google Scholar 

  17. S. Mahabunphachai, M. Koç, Int. J. Mach. Tool Manuf. 48, 1014–1029 (2008)

    Article  Google Scholar 

  18. P.J.M. Janssen, J.P.M. Hoefnagels, T.H. Keijser, M.G.D. Geers, J. Mech. Phys. Solids 56, 2687–2706 (2008)

    Article  Google Scholar 

  19. T. Furushima, H. Tsunezaki, T. Nakayama, K. Manabe, S. Alexsandrov, Key Eng. Mater. 554–557, 169–173 (2013)

    Article  Google Scholar 

  20. O. Wouters, W.P. Vellinga, R. Van Tijum, J.T.M. Hosson, Acta Mater. 53, 4043–4050 (2005)

    Article  Google Scholar 

  21. H.A. Al-Qureshi, A.N. Klein, M.C. Fredel, J. Mater. Process. Technol. 170, 204–210 (2005)

    Article  Google Scholar 

  22. W.L. Chan, M.W. Fu, J. Mater. Process. Technol. 212, 1501–1512 (2012)

    Article  Google Scholar 

  23. J.G. Liu, M.W. Fu, J. Lu, W.L. Chan, Comput. Mater. Sci. 50, 2604–2614 (2011)

    Article  Google Scholar 

  24. M. Klein, A. Hadrboletz, B. Weiss, G. Khatibi, Mater. Sci. Eng. A 319–321, 924–928 (2001)

    Article  Google Scholar 

  25. T. Mizuno, H. Mulk, Wear 198, 176–184 (1996)

    Article  Google Scholar 

  26. M.W. Fu, W.L. Chan, Mater. Des. 32, 4738–4746 (2011)

    Article  Google Scholar 

  27. I. Ragai, D. Lazim, J.A. Nemes, J. Mater. Process. Technol. 166, 116–127 (2005)

    Article  Google Scholar 

  28. S. Li, R.H. Wagoner, Int. J. Plast. 27, 1126–1144 (2011)

    Article  Google Scholar 

  29. S. Thuillier, P.Y. Manach, Int. J. Plast. 25, 733–751 (2009)

    Article  Google Scholar 

  30. C.H. Pham, S. Thuillier, P.Y. Manach, J. Mater. Process. Technol. 214, 844–855 (2014)

    Article  Google Scholar 

  31. C.H. Pham, S. Thuillier, and P.Y. Manach: The 9th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, Melbourne, Australia, 2014, vol. 1567, pp. 422–427.

  32. T.A. Kals, R. Eckstein, J. Mater. Process. Technol. 103, 95–101 (2000)

    Article  Google Scholar 

  33. B.S. Katharine, A.E. David, A.C. Todd, Adv. Mater. Process. 166, 32–37 (2008)

    Google Scholar 

  34. ASTM E112–10. Standard test methods for determining average grain size. ASTM International, West Conshohocken 2010

    Google Scholar 

  35. S.A. Parasiz, R. VanBenthysen, B.L. Kinsey, J. Manuf. Sci. Eng. 132, 011–018 (2010)

    Article  Google Scholar 

  36. G.T. Gau, C. Principe, J. Wang, J. Mater. Process. Technol. 184, 42–46 (2007)

    Article  Google Scholar 

  37. C.J. Wang, D.B. Shan, J. Zhou, B. Guo, L.N. Sun, J. Mater. Process. Technol. 187–188, 256–269 (2007)

    Article  Google Scholar 

  38. INSTRON Corporation. Instron Series 5500 Load Frames Including Series 5540, 5560, 5580. M10–14190-EN, Revision A 2007

  39. G.T. Gau, C. Principe, M. Yu, J. Mater. Process. Technol. 191, 7–10 (2007)

    Article  Google Scholar 

  40. ISO 6892–1:2009(E). Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature

  41. ASTM E8/E8M. Standard test methods for tension testing of metallic materials. ASTM International, West Conshohocken 2009

    Google Scholar 

  42. Faerber J. Microscopie électronique à balayage, Microanalyse X par sonde électronique. Institut de Physique et Chimie des matériaux de Strabourg, Strasbourg, France 2004

    Google Scholar 

  43. H. Kim, C. Kim, F. Barlat, E. Pavlina, M.G. Lee, Mater. Sci. Eng. A 562, 161–171 (2013)

    Article  Google Scholar 

  44. P.Y. Manach, N. Couty, Comput. Mech. 28, 17–25 (2002)

    Article  Google Scholar 

  45. S. Bouvier, H. Haddadi, P. Levée, C. Teodosiu, J. Mater. Process. Technol. 172, 96–103 (2006)

    Article  Google Scholar 

  46. L. Yang, L. Lu, Scripta Mater. 69, 242–245 (2013)

    Article  Google Scholar 

  47. S. Gallée, P.Y. Manach, S. Thuillier, Mater. Sci. Eng. A 466, 47–55 (2007)

    Article  Google Scholar 

  48. Z. Tourki, H. Bargui, H. Sidhom, J. Mater. Process. Technol. 166, 330–336 (2005)

    Article  Google Scholar 

  49. L. Joshua, T. Chester, M. Martin, Metall. Mater. Trans. A 37A, 147–161 (2006)

    Google Scholar 

  50. D.Y. Ryoo, N. Kang, C.Y. Kang, Mater. Sci. Eng. A 528, 2277–2281 (2011)

    Article  Google Scholar 

  51. K. Yamaguchi, H. Adachi, N. Takakura, Met. Mater. Int. 4, 420–425 (1998)

    Google Scholar 

  52. M. Vrh, M. Halilovič, B. Štok, Exp. Mech. 51, 677–695 (2011)

    Article  Google Scholar 

  53. P.A. Eggertsen, K. Mattiasson, Int. J. Mech. Sci. 51, 547–563 (2009)

    Article  Google Scholar 

  54. C.H. Pham, S. Thuillier, and P.Y. Manach: Steel Res. Int., 2015

  55. M.A. Sutton, J.D. Helm, M.L. Boone, Int. J. Fract. 109, 285–301 (2001)

    Article  Google Scholar 

  56. J. Bron, J. Besson, A. Pineau, Mater. Sci. Eng. A 380, 356–364 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Thuillier.

Additional information

Manuscript submitted June 27, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, CH., Thuillier, S. & Manach, PY. Mechanical Properties Involved in the Micro-forming of Ultra-thin Stainless Steel Sheets. Metall Mater Trans A 46, 3502–3515 (2015). https://doi.org/10.1007/s11661-015-2978-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2978-1

Keywords

Navigation