Log in

Cyclic Deformation Behavior of Fe-18Cr-18Mn-0.63N Nickel-Free High-Nitrogen Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Cyclic deformation and damage behavior of a Ni-free high-nitrogen austenitic stainless steel with a composition of Fe-18Cr-18Mn-0.63N (weight pct) were studied, and the internal stress and effective stress were estimated by partitioning the hysteresis loop during cyclic straining at total strain amplitudes ranging from 3.0 × 10−3 to 1.0 × 10−2. It is found that immediate cyclic softening takes place at all strain amplitudes and subsequently a saturation or quasi-saturation state develops and occupies the main part of the whole fatigue life. The internal stress increases with increasing strain amplitude, while the variation of effective stress with strain amplitude is somewhat complicated. Such a phenomenon is discussed in terms of dislocation structures and the short-range ordering caused by the interaction between nitrogen atoms and substitutional atoms. The relationship of fatigue life vs plastic strain amplitude (N f−Δε pl/2) follows a bilinear Coffin–Manson rule, resulting from the variation in slip deformation mode with the applied strain amplitude. At the low strain amplitude, cracks initiate along slip bands, and planar slip dislocation configurations dominate the major characteristic of internal microstructures. At high strain amplitudes, intergranular (mostly along grain boundaries and few along twin boundaries) cracks are generally found, and the deformation microstructures are mainly composed of dislocation cells, stacking faults and a small amount of deformation twins, in addition to planar slip dislocation structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.W. Simmons, Mater. Sci. Eng. A, 1996, vol. 207, pp. 159–69.

    Article  Google Scholar 

  2. P.J. Uggowitzer, R. Magdowski, and M.O. Speidel, ISIJ Int., 1996, vol. 36, pp. 901–908.

    Article  Google Scholar 

  3. F. Shi, X.W. Li, Y. Qi, and C.M. Liu, Key Eng. Mater., 2013, vols. 531–532, pp. 97–102.

    Google Scholar 

  4. F. Shi, X.W. Li, Y. Qi, and C.M. Liu, Steel Res. Int., 2013, vol. 84, pp. 1034–39.

    Google Scholar 

  5. D. Kuroda, S. Hiromoto, T. Hanawa, and Y. Katada, Mater. Trans., 2002, vol. 43, pp. 3100–04.

    Article  Google Scholar 

  6. C.W. Shao, F. Shi, W. W. Guo, and X.W. Li, Mater. Trans., 2014, vol. 56, pp. 46–53.

    Article  Google Scholar 

  7. N. Maruyama, S. Hiromoto, E. Akiyama, and M. Nakamura, Sci. Technol. Adv. Mater., 2013, vol. 14, p. 025002.

    Article  Google Scholar 

  8. M. Sumita, T. Hanawa, and S.H. Teoh, Mater. Sci. Eng. C, 2004, vol. 24, pp. 753–60.

    Article  Google Scholar 

  9. D. Kuroda, T. Hanawa, T. Hibaru, S. Kuroda, and M. Kobayashi, Mater. Trans., 2003, vol. 44, pp. 1363–69.

    Article  Google Scholar 

  10. M. Sagara, H. Uno, Y. Katada, and T. Kodama, J. Iron Steel Inst. Jpn., 2002, vol. 88, pp. 672–77.

    Google Scholar 

  11. K. L. Chao, H. Y. Liao, J. J. Shyue, and S. S. Lian, Metall. Mater. Trans. B, 2014, vol. 45B, pp. 381–91.

    Article  Google Scholar 

  12. N. Maruyama, M. Sanbe, Y. Katada, and K. Kanazawa, Mater. Trans., 2009, vol. 50, pp. 2615–22.

    Article  Google Scholar 

  13. A.H. Cottrell: Dislocation and Plastic Flow in Crystals, Clarendon Press, Oxford, 1953.

    Google Scholar 

  14. M.S. Pham, S.R. Holdsworth, K.G.F. Janssens, and E. Mazza, Int. J. Plasticity, 2013, vol. 47, pp. 143–64.

    Article  Google Scholar 

  15. M.S. Pham and S.R. Holdsworth, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 738–51.

    Article  Google Scholar 

  16. J. Polák, F. Fardoun, and S. Degallaix, Mater. Sci. Eng. A, 1996, vol. 215, pp. 104–12.

    Article  Google Scholar 

  17. D. Kuhlmann-Wilsdorf and C. Laird, Mater. Sci. Eng., 1979, vol. 37, pp. 111–20.

    Article  Google Scholar 

  18. J.I. Dickson, J. Boutin, and L. Handfield, Mater. Sci. Eng., 1984, vol. 64, pp. L7–L11.

    Article  Google Scholar 

  19. S. Heino and B. Karlsson, Acta Mater., 2001, vol. 49, pp. 339–51.

    Article  Google Scholar 

  20. B. Chang and Z. Zhang, Mater. Sci. Eng. A, 2012, vol. 556, pp. 625–32.

    Article  Google Scholar 

  21. M.L.G. Byrnes, M. Grujicic, and W.S. Owen, Acta Mater., 1987, vol. 35, pp. 1853–62.

    Article  Google Scholar 

  22. J. Polák, F. Fardoun, and S. Degallaix, Mater. Sci. Eng. A, 2001, vol. 297, pp. 154–61.

    Article  Google Scholar 

  23. M. Nyström, U. Lindstedt, B. Karlsson, and J.O. Nilsson, Mater. Sci. Technol., 1997, vol. 13, pp. 560–67.

    Article  Google Scholar 

  24. J.B. Vogt, J. Mater. Process. Technol., 2001, vol. 117, pp. 364–69.

    Article  Google Scholar 

  25. Z.J. Zhang, P. Zhang, L.L. Li, and Z.F. Zhang, Acta Mater., 2012, vol. 60, pp. 3113–27.

    Article  Google Scholar 

  26. P. Zhang, Z.J. Zhang, L.L. Li, and Z.F. Zhang, Scripta Mater., 2012, vol. 66, pp. 854–59.

    Article  Google Scholar 

  27. L.L. Li, Z.J. Zhang, P. Zhang, Z.G. Wang, and Z.F. Zhang. Nat. Commun., 2013, vol. 5, p. 3536.

    Google Scholar 

  28. X.W. Li, Z.G. Wang, Y.W. Zhang, S.X. Li, and Y. Umakoshi, Phys. Stat. Sol. (a), 2002, vol. 191, pp. 97–105.

    Article  Google Scholar 

  29. X. W. Li, Y. Umakoshi, B. Gong, S.X. Li, and Z.G. Wang, Mater. Sci. Eng. A, 2002, vol. 333, pp. 51–59.

    Article  Google Scholar 

  30. B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf, Acta Metall. Mater., 1992, vol. 40, pp. 205–19.

    Article  Google Scholar 

  31. J. Kratochvíl, M. Kružík, and R. Sedláček, Int. J. Eng. Sci., 2010, vol. 48, pp. 1401–12.

    Article  Google Scholar 

  32. T. Kruml and S. Degallaix, Acta Mater., 1997, vol. 45, pp. 5145–51.

    Article  Google Scholar 

  33. K. Obrtlik, T. Kruml, and J. Polak, Mater. Sci. Eng. A, 1994, vol. 187, pp. 1–9.

    Article  Google Scholar 

  34. W.Y. Maeng and M.H. Kim, J. Nucl. Mater., 2000, vol. 282, pp. 32–39.

    Article  Google Scholar 

  35. V. Gavriljuk, Y. Petrov, and B. Shanina, Scripta Mater., 2006, vol. 55, pp. 537–40.

    Article  Google Scholar 

  36. X. W. Li, X. M. Wu, Z. G. Wang, and Y. Umakoshi, Metall. Mater. Trans. A, 2003, vol. 34A, pp. 307–18.

    Article  Google Scholar 

  37. X.W. Li, N. Peng, X.M. Wu, and Z.G. Wang, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3835–43.

    Article  Google Scholar 

  38. K. Oda, N. Kondo, and K. Shibata, ISIJ Int., 1990, vol. 30, pp. 625–31.

    Article  Google Scholar 

  39. S. Kalnaus and Y. Jiang, ASME J. Eng. Mater. Technol., 2008, vol. 130, p. 031013.

    Article  Google Scholar 

  40. V.G. Gavriljuk and H. Berns: High Nitrogen Steels: Structure, Properties, Manufacture, Applications, 1st ed., Springer Verlag Press, Berlin, 1999.

    Book  Google Scholar 

  41. G.V. Prasad Reddy, R. Sandhya, S. Sankaran, and M.D. Mathew: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5044–56.

  42. V. Singh, M. Sundararaman, W. Chen, and R.P. Wahi, Metall. Trans. A, 1991, vol. 22A, pp. 499–506.

    Article  Google Scholar 

  43. V.S. Sarma, M. Sundararaman, and K.A. Padmanabhan, Mater. Sci. Technol., 1998, vol. 14, pp. 669–75.

    Article  Google Scholar 

  44. I. Karaman, H. Sehitoglu, H.J. Maier, and Y.I. Chumlyakov, Acta Mater., 2001, vol. 49, pp. 3919–33.

    Article  Google Scholar 

  45. J.B. Vogt, A. Messai, and J. Foct, Scripta Metall. Mater., 1994, vol. 31, pp. 549–54.

    Article  Google Scholar 

  46. S. Heino and B. Karlsson, Acta Mater., 2001, vol. 49, pp. 353–63.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC) under Grant nos. 51231002, 51271054, and 51201027, and also by the Fundamental Research Funds for the Central Universities of China under Grant nos. N110105001, N120405001, and N120505001. The authors would like to thank Z. F. Gao and B. Wang for their assistance in SEM observations and fatigue tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Li.

Additional information

Manuscript submitted September 28, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, C.W., Shi, F. & Li, X.W. Cyclic Deformation Behavior of Fe-18Cr-18Mn-0.63N Nickel-Free High-Nitrogen Austenitic Stainless Steel. Metall Mater Trans A 46, 1610–1620 (2015). https://doi.org/10.1007/s11661-015-2769-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2769-8

Keywords

Navigation