Log in

First-Principles Study on the Grain Boundary Embrittlement of Metals by Solute Segregation: Part II. Metal (Fe, Al, Cu)-Hydrogen (H) Systems

  • Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microscopic mechanism of grain boundary (GB) embrittlement in metals by hydrogen segregation (trap**) has been not well understood for many years. From first-principles calculations, we show here that the calculated cohesive energy of bcc Fe Σ3(111) and fcc Al(Cu) Σ5(012) symmetrical tilt GBs can be significantly reduced if many hydrogen atoms segregate at the GBs. This indicates that the reduction of the cohesive energy of the GB may cause the hydrogen-induced GB embrittlement in Fe, Al, and Cu. Considering the “mobile” effect of hydrogen during fracture, especially for the Fe system, more hydrogen atoms coming from solid solution state can segregate on the gradually formed two fracture surfaces and reduce further the cohesive energy. We suggest a new idea about the upper and lower critical stresses observed in the constant-load test of hydrogen-induced delayed fracture in high-strength steels; the upper critical stress is determined by the amount (density) of “immobile” hydrogen atoms segregated at the GB before fracture, and the lower critical stress is determined by the total amount (density) of immobile and mobile hydrogen atoms, the latter of which segregate on the two fracture surfaces during fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Yamaguchi: Metall. Mater. Trans. A, 2010, vol. 41A, DOI:10.1007/s11661-010-0381-5.

  2. J.R. Rice and J.-S. Wang: Mater. Sci. Eng., 1989, vol. A107, pp. 23–40.

    CAS  Google Scholar 

  3. J.P. Hirth: Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

  4. L. Zhong, R. Wu, A.J. Freeman, and G.B. Olson: Phys. Rev. B, 2000, vol. 62, pp. 13938–41.

    Article  CAS  Google Scholar 

  5. M. Iwamoto and Y. Fukai: Mater. Trans. JIM, 1999, vol. 40, pp. 606–11.

    Google Scholar 

  6. Y. Tateyama and T. Ohno: Phys. Rev. B, 2003, vol. 67, pp. 174105–14.

    Article  Google Scholar 

  7. G. Lu and E. Kaxiras: Phys. Rev. Lett., 2005, vol. 94, pp. 155501–04.

    Article  Google Scholar 

  8. M. Yamaguchi, K. Ebihara, M. Itakura, T. Kadoyoshi, T. Suzudo, and H. Kaburaki: Proc. Int. Conf. for Processing and Fabrications of Advanced Materials 18 (PFAM18), Sendai, Japan, 2009, vol. 1, pp. 65–74.

  9. A. Troiano: Trans. ASM, 1960, vol. 52, pp. 54–80.

    Google Scholar 

  10. G. Kresse and J. Hafner: Phys. Rev. B, 1993, vol. 47, pp. 558–61.

    Article  CAS  Google Scholar 

  11. G. Kresse and J. Furthmueller: Phys. Rev. B, 1996, vol. 54, pp. 11169–86.

    Article  CAS  Google Scholar 

  12. G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758–75.

    Article  CAS  Google Scholar 

  13. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68.

    Article  CAS  Google Scholar 

  14. K. Christmann: Surf. Sci. Rep., 1983, vol. 9, pp. 1–163.

    Article  Google Scholar 

  15. W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1982, vol. 13A, pp. 135–40.

    CAS  Google Scholar 

  16. K. Ono and M. Meshii: Acta Metall. Mater., 1992, vol. 40, pp. 1357–64.

    Article  CAS  Google Scholar 

  17. T. Asaoka, C. Dagbert, M. Aucouturier, and J. Galland: Scripta Metall., 1977, vol. 11, pp. 467–72.

    Article  CAS  Google Scholar 

  18. K. Ichitani and S. Osaki: Proc. 18th Int. Symp. on Processing and Fabrication of Advanced Materials (PFAM XVIII), Sendai, Japan, 2009, vol. 1, pp. 55–64.

  19. M. Wang, E. Akiyama, and K. Tsuzaki: Corr. Sci., 2007, vol. 49, pp. 4081–97.

    Article  CAS  Google Scholar 

  20. H. Vehoff and W. Rothe: Acta Metall., 1983, vol. 31, pp. 1781–93.

    Article  CAS  Google Scholar 

  21. M. Yamaguchi: unpublished research, 2009.

Download references

Acknowledgments

We thank J. Kameda, E. Akiyama, K. Tsuzaki, and A.K. Vasudevan for helpful discussion. The study about the Fe-H system was carried out as a part of research activities of “Fundamental Studies on Technologies for Steel Materials with Enhanced Strength and Functions” by Consortium of JRCM (The Japan Research and Development Center of Metals). Financial support from NEDO (New Energy and Industrial Technology Development Organization) is gratefully acknowledged. This calculation was performed on the supercomputer SGI Altix 3900Bx2 in Japan Atomic Energy Agency (JAEA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatake Yamaguchi.

Additional information

Manuscript submitted December 3, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguchi, M., Ebihara, KI., Itakura, M. et al. First-Principles Study on the Grain Boundary Embrittlement of Metals by Solute Segregation: Part II. Metal (Fe, Al, Cu)-Hydrogen (H) Systems. Metall Mater Trans A 42, 330–339 (2011). https://doi.org/10.1007/s11661-010-0380-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0380-6

Keywords

Navigation