Log in

Correlation between the Microstructure, Growth Mechanism, and Growth Kinetics of Alumina Scales on a FeCrAlY Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural development of an alumina scale formed on a model FeCrAlY alloy during oxidation at 1200 °C was characterized for up to 2000 hours of growth. Quantitative scanning electron microscopy (SEM) studies revealed that the scale had a columnar microstructure, with the grain size being a linear function of the distance from the scale/gas interface. For a given fixed distance from the scale/gas interface, there was found to be no change in the oxide grain size for exposure times ranging from 24 to 2000 hours at 1200 °C, up to 100 hours at 1250 °C. Thus, there was no significant coarsening of existing grains in the scale. Through oxygen tracer experiments, the scale-growth mechanism was shown to be predominated by inward oxygen diffusion along the oxide grain boundaries. Electron backscatter diffraction (EBSD) analysis further revealed that a competitive oxide-grain growth mechanism operates at the scale/alloy interface, which is manifested by a preferential crystallographic grain orientation. The scale-thickening kinetics were modeled using the experimentally-derived, microstructural parameters and were found to be in excellent agreement with converted thermogravimetric (TG) measurements. The model predicted a subparabolic oxidation rate, with the time exponent decreasing with increasing exposure time. The values of the time exponent were shown to be approximately 0.35 to 0.37, at oxidation times commonly reached in the TG experiments, i.e., a few tens of hours. At longer oxidation times of a few thousand hours and with a constant rate of average oxide-grain size increase, the time exponent was predicted to approach 0.33, corresponding to an ideal cubic oxidation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Atkinson: Rev. Mod. Phys., 1985, vol. 57 (2), pp. 437–70

    Article  CAS  Google Scholar 

  2. J. Smialek, R. Gibala: Proc. Int. Conf. on High Temperature Corrosion, R.A. Rapp, ed., National Association of Corrosion Engineers, Houston, TX, 1983, pp. 274–83

    Google Scholar 

  3. A.M. Huntz: J. Mater. Sci. Lett., 1999, vol. 18, pp. 1981–84

    Article  CAS  Google Scholar 

  4. P. Barberis: J. Nucl. Mater., 1995, vol. 226, pp. 34–43

    Article  CAS  Google Scholar 

  5. B.A. Pint: Proc. J. Stringer Symp. on High Temperature Corrosion, ASM International, Materials Park, OH, 2003, pp. 9–19

    Google Scholar 

  6. P.Y. Hou, J. Stringer: Oxid. Met., 1992, vol. 38(5–6), pp. 323–45

    Article  CAS  Google Scholar 

  7. H.J. Grabke, D. Wiemer, H. Viefhaus: J. Appl. Surf. Sci., 1991, vol. 47, pp. 243–50

    Article  CAS  Google Scholar 

  8. W.J. Quadakkers: Mater. Corros., 1990, vol. 41, pp. 659–68

    Article  CAS  Google Scholar 

  9. K. Bongartz, W.J. Quadakkers, J.P. Pfeifer, J.S. Becker: Surf. Sci., 1993, vol. 292, pp. 196–208

    Article  CAS  Google Scholar 

  10. W.J. Quadakkers, H. Holzbrecher, K.G. Briefs, H. Beske: Oxid. Met., 1989, vol. 32 (1–2), pp. 67–88

    Article  CAS  Google Scholar 

  11. B.A. Pint: Oxid. Met., 1996, vol. 45(1–2), pp. 1–37

    Article  CAS  Google Scholar 

  12. E. Schumann, J.C. Yang, M.J. Graham, M. Rühle: Mater. Corros., 1995, vol. 46, pp. 218–22

    Article  CAS  Google Scholar 

  13. P.Y. Hou: J. Am. Ceram. Soc., 2003, vol. 86, pp. 660–68

    Article  CAS  Google Scholar 

  14. J. Cho, C.M. Wang, H.M. Chan, J.M. Rickman, M.P. Harmer: Acta Mater., 1999, vol. 47(15), pp. 4197–207

    Article  CAS  Google Scholar 

  15. J. Chen, L. Ouyang, W.Y. Ching: Acta Mater., 2005, vol. 53, pp. 4111–20

    Article  CAS  Google Scholar 

  16. B.A. Pint, K.B. Alexander: J. Electrochem. Soc., 1998, vol. 145, pp. 1819–29

    Article  CAS  Google Scholar 

  17. G.C. Wood and F.H. Stott: Proc. Int. Conf. on High Temperature Corrosion, R.A. Rapp, ed., National Association of Corrosion Engineers, Houston, TX, 1983, pp. 227-50

  18. J.A. Nychka, D.R. Clarke: Oxid. Met., 2005, vol. 63(5–6), pp. 325–52

    Article  CAS  Google Scholar 

  19. H. Al-Badairy, D.J. Prior, G.J. Tatlock: Mater. High Temp., 2005, vol. 22(3–4), pp. 453–60

    Article  CAS  Google Scholar 

  20. J.R. Blachere, E. Schumann, G.H. Meier, F.S. Pettit: Scripta Mater., 2003, vol. 49, pp. 909–12

    Article  CAS  Google Scholar 

  21. Z. Liu, W. Gao, Y. He: Oxid. Met., 2000, vol. 53(3–4), pp. 341–50

    Article  CAS  Google Scholar 

  22. I.G. Wright, B.A. Pint, C.S. Simpson, P.F. Tortorelli: Mater. Sci. Forum, 1997, vols. 251–254, pp. 195–202

    Google Scholar 

  23. K. Ishii, M. Kohno, S. Ishikawa, S. Satoh: Mater. Trans., JIM, 1997, vol. 38(9), pp. 787–92

    CAS  Google Scholar 

  24. W.J. Quadakkers, D. Naumenko, E. Wessel, V. Kochubey, L. Singheiser: Oxid. Met., 2004, vol. 61(1–2), pp. 17–37

    Article  CAS  Google Scholar 

  25. B. Pieraggi: Oxid. Met., 2005, vol. 64(5–6), pp. 397–403

    Article  CAS  Google Scholar 

  26. D. Naumenko, J. Le-Coze, E. Wessel, W. Fischer, W.J. Quadakkers: Mater. Trans., JIM, 2002, vol. 43(2), pp. 168–72

    Article  CAS  Google Scholar 

  27. W.J. Quadakkers, A. Elschner, W. Speier, H. Nickel: Appl. Surf. Sci., 1991, vol. 52, pp. 271–87

    Article  CAS  Google Scholar 

  28. N. Birks, G.H. Meier, F.S. Pettit: Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, Cambridge, United Kingdom, 2006.

    Google Scholar 

  29. J. Cho, J.M. Rickman, H.M. Chan, M.P. Harmer: J. Am. Ceram. Soc., 2000, vol. 83, pp. 344–52

    Article  CAS  Google Scholar 

  30. S. Fabris, C. Elsässer: Acta Mater., 2003, vol. 51, pp. 71–86

    Article  CAS  Google Scholar 

  31. J.D. Eshelby: Solid State Phys., 1956, vol. 3, p. 79

    Article  CAS  Google Scholar 

  32. C.M. Wang, G.S. Cargill III, M.P. Harmer, H.M. Chan, J. Cho: Acta Mater., 1999, vol. 47, pp. 3411–22

    Article  CAS  Google Scholar 

  33. J.H. Harding, K.J.W. Atkinson, R.W. Grimes: J. Am. Ceram. Soc., 2003, vol. 86, pp. 554–59

    CAS  Google Scholar 

  34. J. Hen, P. Rulis, Y.-N. Xu, L. Ouyang, W.Y. Ching: Acta Mater., 2005, vol. 53, pp. 403–10

    Article  CAS  Google Scholar 

  35. E. Wessel, V. Kochubey, D. Naumenko, L. Niewolak, L. Singheiser, W.J. Quadakkers: Scripta Mater., 2004, vol. 51(10), pp. 987–92

    Article  CAS  Google Scholar 

  36. W.J. Quadakkers, D. Naumenko, L. Singheiser, H.J. Penkalla, A.K. Tyagi, A. Czyrska-Filemonowicz: Mater. Corros., 2000, vol. 51, pp. 350–57

    Article  CAS  Google Scholar 

  37. V.K. Tolpygo, D.R. Clarke: Mater. High Temp., 2000, vol. 17(1), pp. 59–70

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to J. Le-Coze, Ecoles des Mines de Saint-Etienne, for supplying the high-purity model alloys, and to Professor G.H. Meier, Pittsburgh University, for stimulating discussions and for critical reading of the manuscript. The work of L. Niewolak on SNMS depth profiles and that of V.P.R. Sanam on quantitative image analysis is gratefully acknowledged. One of the authors (DN) thanks the Deutsche Forschungsgemeinschaft (DFG) for funding his work through Grant No. NA 615-1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Naumenko.

Additional information

Manuscript submitted April 13, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumenko, D., Gleeson, B., Wessel, E. et al. Correlation between the Microstructure, Growth Mechanism, and Growth Kinetics of Alumina Scales on a FeCrAlY Alloy. Metall Mater Trans A 38, 2974–2983 (2007). https://doi.org/10.1007/s11661-007-9342-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9342-z

Keywords

Navigation