Log in

A novel approach to the determination of the threshold for stress corrosion cracking (K ISCC) using round tensile specimens

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

An Erratum to this article was published on 18 September 2017

Abstract

This article discusses determination of threshold stress intensity for propagation of stress corrosion cracking (K ISCC), using circumferential notch tensile (CNT) specimens. Use of round tensile specimens is a novel and cost-advantageous approach to determination of K ISCC. However, compliance of this specimen geometry to the constraints for application of linear elastic fracture mechanics (LEFM) has traditionally been argued, and hence this aspect is addressed in detail. The LEFM suits best the materials that undergo brittle cracking, and hence a highly brittle material, cast iron, has been selected as the test material. However, susceptibility of this material to caustic embrittlement has been established employing another technique, viz. slow strain rate testing and fractography of the specimens. Using CNT specimens, K ISCC has been determined for the cast iron in hot caustic solutions, and the features of intergranular caustic cracking and secondary cracking have been established using scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Sedriks: Publications of National Association of Corrosion Engineers, NACE, Houston, TX, 1990.

    Google Scholar 

  2. Proc. Environment-Sensitive Fracture, Symp. ASTM Committee G-1, ASTM Special Technical Publication 821, S.W. Dean, E.N. Pugh, and G.M. Ugiansky, eds., ASTM, Philadelphia, PA, 1982.

    Google Scholar 

  3. A. Turnbull: Br. Corr. J., 1992, vol. 27, pp. 271–89.

    Article  Google Scholar 

  4. R.N. Ibrahim and H.L. Stark: Int. J. Fract., 1990, vol. 44, pp. 179–88.

    Google Scholar 

  5. R.N. Ibrahim: ASME PVP, 1999, vol. 388, pp. 155–61.

    Google Scholar 

  6. R.N. Ibrahim and H.L. Stark: Eng. Fract. Mech., 1986, vol. 25, pp. 395–401.

    Article  Google Scholar 

  7. R.K. Singh Raman and B.C. Muddle: Int. J. Pressure Vessels Pi**, 2004, vol. 81, pp. 557–61.

    Article  Google Scholar 

  8. D. Singbeil and D. Tromans: J. Electrochem. Soc.: Electrochem. Sci. Technol. (Corr.), 1981, Oct., pp. 2065–70.

  9. R.N. Parkins, P.W. Slattery, and B.S. Poulson: Corr.-NACE, 1981, vol. 37, p. 651.

    Google Scholar 

  10. H.H. Le and E. Ghali: J. Appl. Electrochem., 1992, vol. 22, p. 396.

    Article  Google Scholar 

  11. D. Singbeil and D. Tromans: Metall. Trans. A, 1982, vol. 13A, p. 1091.

    Article  Google Scholar 

  12. R. Sriram and D. Tromans: Metall. Trans. A, 1985, vol. 16A, p. 979.

    Article  Google Scholar 

  13. N. Bandyopadhyay, C.L. Briant, and E.L. Hall: Metall. Trans. A, 1985, vol. 16A, p. 1333.

    Article  Google Scholar 

  14. H.H. Le and E. Ghali: Corr. Sci., 1990, vol. 30, p. 117.

    Article  Google Scholar 

  15. S. Liu, Z. Zhu, H. Hui, and W. Ke: Metall. Mater. Trans. A, 1996, vol. 27A, p. 1327.

    Article  Google Scholar 

  16. J. Might and D.J. Duquette: Corrosion, 1996, vol. 52, p. 428.

    Article  Google Scholar 

  17. R.K. Singh Raman: Metall. Mater. Trans. A, 2005, vol. 36A, p. 1817.

    Article  Google Scholar 

  18. H.L. Ewalds and R.J.H. Wanhill: Fracture Mechanics, 2nd Print, Edward Arnold, London, U.K., 1985.

    Google Scholar 

  19. ASTM, ASTM Special Committee on Fracture Testing of High-Strength Metallic Materials: Fracture Testing of High-Strength Sheet Materials, ASTM Bulletin 243, ASTM, Philadelphia, PA, 1960, pp. 29–40.

    Google Scholar 

  20. G.R. Irwin: Report No. 5486, Naval Research Laboratory, Washington, D.C., July 1960.

  21. G.R. Irwin: Sugamore Ordinance Materials Conf., Syracuse University Research Institute, Syracuse, NY, 1961.

    Google Scholar 

  22. F.A. McClintock and G.R. Irwin: ASTM STP, 1965, vol. 381, p. 84.

    Google Scholar 

  23. H.L. Stark and R.N. Ibrahim: Eng. Fract. Mech., 1988, vol. 30 (3), pp. 409–14.

    Article  Google Scholar 

  24. H.L. Stark and R.N. Ibrahim: Eng. Fract. Mech., 1992, vol. 41 (4), pp. 569–75.

    Article  Google Scholar 

  25. B.F. Brown and C.D. Beacham: Corr. Sci., 1965, vol. 5, pp. 745–50.

    Article  Google Scholar 

  26. H.R. Smith, D.E. Piper, and F.K. Downey: Eng. Fract. Mech., 1968, vol. 1, pp. 123–28.

    Article  Google Scholar 

  27. R.K. Singh Raman, R. Rihan, and R.N. Ibrahim: Monash University, Melbourne, Australia, unpublished research, 2006.

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article can be found online at http://dx.doi.org/10.1007/s11661-017-4327-z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh Raman, R.K., Rihan, R. & Ibrahim, R.N. A novel approach to the determination of the threshold for stress corrosion cracking (K ISCC) using round tensile specimens. Metall Mater Trans A 37, 2963–2973 (2006). https://doi.org/10.1007/s11661-006-0178-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0178-8

Keywords

Navigation