Log in

Spatial distribution of hip cortical thickness in postmenopausal women with different osteoporotic fractures

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

Few studies h ave discussed the association between cortical bone outside the fracture site and the fracture itself. Focusing on hip cortical thickness, this study revealed distinct distributions of the parameters for hip (trochanteric or femoral neck), vertebral, and peripheral osteoporotic fractures and suggested that the spatial distribution of hip cortical thickness was fracture-specific.

Purpose

Cortical bone is critical for bone strength. Hip cortical thickness is reported to be closely associated with the incidence of hip fractures, but its relationship with nonhip fractures is rarely studied. As the hip is a major site for fracture risk assessment, it would be of great benefit to investigate the association between hip cortical thickness and different osteoporotic fractures.

Methods

One hundred age-matched postmenopausal women were equally assigned to 4 osteoporotic fracture groups (trochanteric, femoral neck, vertebral, and peripheral fractures) and a nonfracture group. Each subject had a clinical quantitative computed tomography scan of the bilateral hips and the lumbar spine. A cortical bone map** algorithm was adopted to calculate hip cortical thickness. Hip and lumbar trabecular density and the hip cortical thickness distribution were compared among the groups.

Results

All the fracture groups presented lower lumbar trabecular density. Compared with nonfracture controls, patients with hip or vertebral fractures but not peripheral fractures showed decreased cortical thickness and trabecular density of the hip. Fracture-specific distributions of cortical thickness were revealed, including zonal defects on the neck-intertrochanter junction, greater trochanter, and the periphery of the lesser trochanter for trochanteric fractures, a focal defect on the anterosuperior neck for femoral neck fractures, a moderate and average distribution for vertebral fractures, and focally thicker cortices on the anterosuperior greater trochanter and the periphery of the lesser trochanter for peripheral fractures.

Conclusion

The spatial distribution of hip cortical thickness was different for each type of osteoporotic fracture, and patients with centrally located fractures demonstrated more severe cortical deterioration. This finding needs to be validated in a larger sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The data are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Odén A, McCloskey EV, Kanis JA, Harvey NC, Johansson H (2015) Burden of high fracture probability worldwide: secular increases 2010–2040. Osteoporos Int 26:2243–2248. https://doi.org/10.1007/s00198-015-3154-6

    Article  Google Scholar 

  2. Johnell O, Kanis J (2005) Epidemiology of osteoporotic fractures. Osteoporos Int 16(Suppl 2):S3-7. https://doi.org/10.1007/s00198-004-1702-6

    Article  PubMed  Google Scholar 

  3. Abtahi S, Driessen JHM, Vestergaard P, van den Bergh J, Boonen A, de Vries F, Burden AM (2019) Secular trends in major osteoporotic fractures among 50+ adults in Denmark between 1995 and 2010. Osteoporos Int 30:2217–2223. https://doi.org/10.1007/s00198-019-05109-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kanis JA (2008) FRAX: fracture risk assessment tool. https://www.sheffield.ac.uk/FRAX/index.aspx. Accessed 28 June,2021

  5. Lagari VS, Levis S (2013) Phytoestrogens in the prevention of postmenopausal bone loss. J Clin Densitom 16:445–449. https://doi.org/10.1016/j.jocd.2013.08.011

    Article  PubMed  Google Scholar 

  6. Eastell R, Szulc P (2017) Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol 5:908–923. https://doi.org/10.1016/s2213-8587(17)30184-5

    Article  PubMed  Google Scholar 

  7. Löffler MT, Sollmann N, Mei K, Valentinitsch A, Noël PB, Kirschke JS, Baum T (2020) X-ray-based quantitative osteoporosis imaging at the spine. Osteoporos Int 31:233–250. https://doi.org/10.1007/s00198-019-05212-2

    Article  PubMed  Google Scholar 

  8. Treece GM, Poole KE, Gee AH (2012) Imaging the femoral cortex: thickness, density and mass from clinical CT. Med Image Anal 16:952–965. https://doi.org/10.1016/j.media.2012.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Engelke K (2017) Quantitative computed tomography-current status and new developments. J Clin Densitom 20:309–321. https://doi.org/10.1016/j.jocd.2017.06.017

    Article  PubMed  Google Scholar 

  10. Johannesdottir F, Turmezei T, Poole KE (2014) Cortical bone assessed with clinical computed tomography at the proximal femur. J Bone Miner Res 29:771–783. https://doi.org/10.1002/jbmr.2199

    Article  PubMed  Google Scholar 

  11. Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375:1729–1736. https://doi.org/10.1016/s0140-6736(10)60320-0

    Article  PubMed  Google Scholar 

  12. Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3:163–175. https://doi.org/10.1007/bf02058659

    Article  CAS  PubMed  Google Scholar 

  13. Holzer G, von Skrbensky G, Holzer LA, Pichl W (2009) Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res 24:468–474. https://doi.org/10.1359/jbmr.081108

    Article  PubMed  Google Scholar 

  14. Verhulp E, van Rietbergen B, Huiskes R (2008) Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone 42:30–35. https://doi.org/10.1016/j.bone.2007.08.039

    Article  CAS  PubMed  Google Scholar 

  15. Poole KE, Treece GM, Mayhew PM, Vaculík J, Dungl P, Horák M, Štěpán JJ, Gee AH (2012) Cortical thickness map** to identify focal osteoporosis in patients with hip fracture. PLoS ONE 7:e38466. https://doi.org/10.1371/journal.pone.0038466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Treece GM, Gee AH, Tonkin C, Ewing SK, Cawthon PM, Black DM, Poole KE (2015) Predicting hip fracture type with cortical bone map** (CBM) in the osteoporotic fractures in men (MrOS) study. J Bone Miner Res 30:2067–2077. https://doi.org/10.1002/jbmr.2552

    Article  PubMed  Google Scholar 

  17. Poole KES, Skingle L, Gee AH, Turmezei TD, Johannesdottir F, Blesic K, Rose C, Vindlacheruvu M, Donell S, Vaculik J, Dungl P, Horak M, Stepan JJ, Reeve J, Treece GM (2017) Focal osteoporosis defects play a key role in hip fracture. Bone 94:124–134. https://doi.org/10.1016/j.bone.2016.10.020

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yu A, Carballido-Gamio J, Wang L, Lang TF, Su Y, Wu X, Wang M, Wei J, Yi C, Cheng X (2017) Spatial differences in the distribution of bone between femoral neck and trochanteric fractures. J Bone Miner Res 32:1672–1680. https://doi.org/10.1002/jbmr.3150

    Article  Google Scholar 

  19. Li X, Xu Y, Lin W, Fan Y (2020) The comparison of bone mineral density of femoral head between non-hip fracture side and hip fracture side. Sci Rep 10:13015. https://doi.org/10.1038/s41598-020-70144-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21:101–108. https://doi.org/10.1016/s8756-3282(97)00072-0

    Article  CAS  PubMed  Google Scholar 

  21. Cheng X, Wang L, Zeng Q, Wu J (2019) The China guideline for the diagnosis criteria of osteoporosis with quantitative computed tomography (QCT) (2018). Chin J Osteoporos 25:733–737

    Google Scholar 

  22. Radiology ACo (2018) Practice parameter for the performance of quantitative computed tomography (QCT) bone densitometry. https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards/Practice-Parameters-by-Modality. Accessed 28 June,2021

  23. Treece GM, Gee AH (2015) Independent measurement of femoral cortical thickness and cortical bone density using clinical CT. Med Image Anal 20:249–264. https://doi.org/10.1016/j.media.2014.11.012

    Article  CAS  PubMed  Google Scholar 

  24. Treece GM, Gee AH, Mayhew PM, Poole KES (2010) High resolution cortical bone thickness measurement from clinical CT data. Med Image Anal 14:276–290. https://doi.org/10.1016/j.media.2010.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prevrhal S, Engelke K, Kalender WA (1999) Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol 44:751–764. https://doi.org/10.1088/0031-9155/44/3/017

    Article  CAS  PubMed  Google Scholar 

  26. Audenaert EA, Van Houcke J, Almeida DF, Paelinck L, Peiffer M, Steenackers G, Vandermeulen D (2019) Cascaded statistical shape model based segmentation of the full lower limb in CT. Comput Methods Biomech Biomed Engin 22:644–657. https://doi.org/10.1080/10255842.2019.1577828

    Article  PubMed  Google Scholar 

  27. Yang L, Udall WJ, McCloskey EV, Eastell R (2014) Distribution of bone density and cortical thickness in the proximal femur and their association with hip fracture in postmenopausal women: a quantitative computed tomography study. Osteoporos Int 25:251–263. https://doi.org/10.1007/s00198-013-2401-y

    Article  CAS  PubMed  Google Scholar 

  28. Hey HW, Sng WJ, Lim JL, Tan CS, Gan AT, Ng JH, Kagda FH (2015) Interpretation of hip fracture patterns using areal bone mineral density in the proximal femur. Arch Orthop Trauma Surg 135:1647–1653. https://doi.org/10.1007/s00402-015-2326-3

    Article  PubMed  Google Scholar 

  29. Su YB, Wang L, Wu XB, Yi C, Yang MH, Yan D, Cheng KB, Cheng XG (2019) The spatial differences in bone mineral density and hip structure between low-energy femoral neck and trochanteric fractures in elderly Chinese using quantitative computed tomography. Bone 124:62–68. https://doi.org/10.1016/j.bone.2019.04.007

    Article  PubMed  Google Scholar 

  30. Li M, Li ZR, Li JT, Lei MX, Su XY, Wang GQ, Zhang H, Xu GX, Yin P, Zhang LC, Tang PF (2019) Three-dimensional map** of intertrochanteric fracture lines. Chin Med J (Engl) 132:2524–2533. https://doi.org/10.1097/cm9.0000000000000446

    Article  Google Scholar 

  31. Li C, Zhao D, Xu X, Ding J, Guo Y, Liao L, Li G (2020) Three-dimensional computed tomography (CT) map** of intertrochanteric fractures in elderly patients. Med Sci Monit 26:e925452. https://doi.org/10.12659/msm.925452

  32. Tang T, Cripton PA, Guy P, McKay HA, Wang R (2018) Clinical hip fracture is accompanied by compression induced failure in the superior cortex of the femoral neck. Bone 108:121–131. https://doi.org/10.1016/j.bone.2017.12.020

    Article  PubMed  Google Scholar 

  33. Schileo E, Balistreri L, Grassi L, Cristofolini L, Taddei F (2014) To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations? J Biomech 47:3531–3538. https://doi.org/10.1016/j.jbiomech.2014.08.024

    Article  PubMed  Google Scholar 

  34. Borgen TT, Bjørnerem Å, Solberg LB, Andreasen C, Brunborg C, Stenbro MB, Hübschle LM, Froholdt A, Figved W, Apalset EM, Gjertsen JE, Basso T, Lund I, Hansen AK, Stutzer JM, Omsland TK, Nordsletten L, Frihagen F, Eriksen EF (2019) Post-fracture risk assessment: target the centrally sited fractures first! A substudy of NoFRACT. J Bone Miner Res 34:2036–2044. https://doi.org/10.1002/jbmr.3827

    Article  CAS  PubMed  Google Scholar 

  35. Bonnick SL, Nichols DL, Sanborn CF, Payne SG, Moen SM, Heiss CJ (1996) Right and left proximal femur analyses: is there a need to do both? Calcif Tissue Int 58:307–310. https://doi.org/10.1007/bf02509376

    Article  CAS  PubMed  Google Scholar 

  36. Rao AD, Reddy S, Rao DS (2000) Is there a difference between right and left femoral bone density? J Clin Densitom 3:57–61. https://doi.org/10.1385/jcd:3:1:057

    Article  CAS  PubMed  Google Scholar 

  37. Lindner C, Wallis GA, Cootes TF (2014) Increasing shape modelling accuracy by adjusting for subject positioning: an application to the analysis of radiographic proximal femur symmetry using data from the Osteoarthritis Initiative. Bone 61:64–70. https://doi.org/10.1016/j.bone.2014.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Science and Technology Commission of Shanghai Municipality (15411951500) and Foundation of Shanghai Municipal Commission of Health and Family Planning (2015ZB0501).

Author information

Authors and Affiliations

Authors

Contributions

ML was responsible for data analysis, data interpretation, manuscript drafting, and revision; XL and YX were responsible for data collection and preprocessing; YF was responsible for study design and manuscript revision.

Corresponding author

Correspondence to Yongqian Fan.

Ethics declarations

Ethics approval

The study was approved by Ethical Committee of Huadong Hospital Affiliated to Fudan University.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, M., Li, X., Xu, Y. et al. Spatial distribution of hip cortical thickness in postmenopausal women with different osteoporotic fractures. Arch Osteoporos 16, 172 (2021). https://doi.org/10.1007/s11657-021-01039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-021-01039-9

Keywords

Navigation