Log in

High-efficiency somatic embryogenesis and morphohistology and histochemistry of somatic embryo development in Larix leptolepis Gordon

  • Research Article
  • Published:
Forestry Studies in China

Abstract

A high-efficiency somatic embryogenesis protocol of Japanese larch (Larix leptolepis Gordon) has been established in our investigation. Calli were induced from immature zygotic embryos of female cones of L. leptolepis and then subcultured regularly on to a modified Gupta and Durzan (DCR) basal medium for 5 years. Embryogenic tissues showed distinct morphological changes during somatic embryo development when they were transferred to a maturation medium supplemented with abscisic acid (ABA) compared with the morphology in a medium lacking ABA. Histological observations indicated that polyembryony was a characteristic feature during early embryogeny and somatic embryos at later stages showed normal histodifferentiation. In addition, histochemical analysis revealed that abundant starch granules and proteins accumulated in mature embryos, indicating that they played important roles in the development and regeneration of normal plantlets from somatic embryos on hormone-free germination media

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cangahuala-Inocente G C, Steine N, Santos M, Guerra M P. 2004. Morphohistological analysis and histochemistry of Feijoa sellowiana somatic embryogenesis. Protoplasma, 224: 33–40

    PubMed  CAS  Google Scholar 

  • Carman J G. 1990. Embryogenic cells in plat tissue cultures: occurrence and behavior. In Vitro Cell Dev. Biol., 26: 746–753

    Article  Google Scholar 

  • Chrispeels M J, Crawford N M, Schroeder J I. 1999. Proteins for transport of water and mineral nutrients across the membranes of plant cells. Plant Cell, 11: 661–675

    Article  PubMed  CAS  Google Scholar 

  • Chu C C. 2002. Contributions of Chinese botanists to plant tissue culture in the 20th century. Acta Bot. Sin., 44: 1,075–1,084

    Google Scholar 

  • Dai R L, Zang W, **ng G S, Wang Y F. 1999. Quantitative stereologic analysis of changes in the metabolize dynamic of protein during somatic embryogenesis in Lycium barbarum L. Acta Agric. Boreali. Sin., 19: 266–269 (in Chinese with an English abstract)

    CAS  Google Scholar 

  • Dunstan D I, Dong J Z, Carrier D J, Abrams S R. 1998. Events following ABA treatment of spruce somatic embryos. In Vitro Cell Dev. Biol., 34: 159–168

    Article  CAS  Google Scholar 

  • Feher A, Taras P, Pasternak P, Dudits D. 2003. Transition of somatic plant cell to an embryogenic state. Plant Cell Tiss. Organ Cult., 74: 201–228

    Article  CAS  Google Scholar 

  • Feirer R P, Conkey J H, Verhagen S A. 1989. Triglycerides in embryogenic conifer calli: a comparison with zygotic embryos. Plant Cell Rep., 8: 207–209

    Article  CAS  Google Scholar 

  • Filonova L H, Bozhkov P V, von Arnold S. 2000. Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J. Exp. Bot., 51: 249–264

    Article  PubMed  CAS  Google Scholar 

  • Gorbatenko O, Hakman I. 2001. Desiccation-tolerant somatic embryos of Norway spruce (Picea abies) can be produced in liquid cultures and regenerated into plantlets. Int. J. Plant Sci., 162: 1,211–1,218

    Article  Google Scholar 

  • Guo Y M, Yang Y G, Guo Y, Guo Z C. 2003. The application and influence of biotechnology in forestry. Acta Agric. Boreali. Sin., 24: 337–344 (in Chinese with an English abstract)

    Google Scholar 

  • Gupta P K, Durzan D J. 1985. Shoot multiplication from mature of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep., 4: 177–179

    Article  CAS  Google Scholar 

  • Gutmann M, von Aderkas P, Label P, Lelu M A. 1996. Effects of abscisic acid on somatic embryo maturation of hybrid larch. J. Exp. Bot., 47: 1,905–1,917

    Article  CAS  Google Scholar 

  • Higgings T J V, Jacobsen J V, Zwar J A. 1982. Gibberellic acid and abscisic acid modulate protein synthesis and mRNA levels in barley aleurone layers. Plant Mol. Biol., 1: 191–215

    Article  Google Scholar 

  • Jiang B, Yang Y G, Guo Y M, Guo Z C, Chen Y Z. 2004. Recent advances in conifer somatic embryogenesis. Chin. Bull. Bot., 21: 495–505 (in Chinese with an English abstract)

    Google Scholar 

  • Kim Y W, Youn Y, Noh E R, Kim J C. 1999. Somatic embryogenesis and plant regeneration from immature zygotic embryos of Japanese larch (Larix leptolepis). Plant Cell Tiss. Organ Cult., 55: 95–101

    Article  Google Scholar 

  • Kong L. 1994. Factors Affecting White Spruce Somatic Embryogenesis and Embryo Conversion. Ph. D. Dissertation. Calgary: University of Calgary

    Google Scholar 

  • Lewandowski A, Burczyk J, Mejnartowicz L. 1991. Genetic structure and the mating system in an old stand of Polish larch. Silvae Genet., 40: 75–79

    Google Scholar 

  • Litvay J D, Verma D C, Johnson M A. 1985. Influence of a loblolly pine (Pinus taeda L.) culture medium and its components on growth and embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep., 4: 325–328

    Article  CAS  Google Scholar 

  • Liu C Q, **a X L, Yin W L, Huang L C, Zhou J H. 2006. Shoot regeneration and somatic embryogenesis from needles of redwood (Sequoia sempervirens (D.Don.) Endl.). Plant Cell Rep., 25: 621–628

    Article  PubMed  CAS  Google Scholar 

  • Merkle S A, Dean J F D. 2000. Forest tree biotechnology. Curr. Opin. Biotechnol., 11: 298–302

    Article  PubMed  CAS  Google Scholar 

  • Mordhorst A P, Toonen M A J, de Vries S C. 1997. Plant embryogenesis. Critical Rev. Plant Sci., 16: 535–576

    Article  Google Scholar 

  • Oliviusson P, Hakman I. 1995. A tonoplast intrinsic protein (TIP) is present in seeds, roots and somatic embryos of Norway spruce (Picea abies). Physiol. Plant., 95: 288–295

    Article  CAS  Google Scholar 

  • Roberts D R, Flinn B S, Webb D T, Webster F B, Sutton B C S. 1990. Abscisic acid and indole-3-butric acid regulation of maturation and accumulation of storage proteins in somatic embryos of interior spruce. Physiol. Plant., 78: 355–360

    Article  CAS  Google Scholar 

  • Singh H. 1978. Embryology of Gymnosperms. Berlin: Gebruder Borntraeger

    Google Scholar 

  • Tyerman S D, Bohnert H J, Maurel C, Steudle E, Smith J A C. 1999. Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J. Exp. Bot., 50: 1,055–1,071

    Article  CAS  Google Scholar 

  • von Aderkas P, Klimaszewska K, Bonga J M. 1990. Diploid and haploid embryogenesis in Larix leptolepis L. decidua, and their reciprocal hybrids. Can. J. For. Res., 20: 9–14

    Article  Google Scholar 

  • von Aderkas P, Lelu M A, Label P. 2001. Plant growth regulator levels during maturation of larch somatic embryos. Plant Physiol. Biochem., 39: 495–502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin **-xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Xx., Lu, Ld., Hao, Hq. et al. High-efficiency somatic embryogenesis and morphohistology and histochemistry of somatic embryo development in Larix leptolepis Gordon. For. Stud. China 9, 182–188 (2007). https://doi.org/10.1007/s11632-007-0029-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11632-007-0029-8

Key words

Navigation