Log in

Numerical Investigation on Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurry in a Rectangular Minichannel

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Microencapsulation phase change material slurry (MEPCMS) becomes a potential working fluid for cooling high energy density miniaturized components, thanks to the latent heat absorption of particles in the heat transfer process. In this work, the Discrete Phase Model (DPM) based on the Euler-Lagrangian method is used to numerically investigate the convective heat transfer characteristics of MEPCMS flowing through a rectangular minichannel with constant heat flux. The results show that particles of MEPCMS are mainly subjected to drag force during the flow. Even so, they can migrate from the high-temperature region to the low-temperature region driven by the thermophoretic force, affecting the particle distribution and phase change process. Moreover, the Nux of the MEPCMS fluctuates due to particle phase change with varying specific heat capacities. Specifically, the value increases first, then decreases, and eventually increases again until it approaches the fully developed value of the pure base fluid as the particles gradually melt. Furthermore, the heat transfer performance of the MEPCMS is influenced by the combination of fluid inlet temperature (Tin), fluid inlet velocity (v), and mass concentration (cm) of MEPCM particles. The result shows that the maximum reduction of the maximum bottom wall temperature difference (ΔTw) is 23.98% at Tin=293.15 K, v=0.15 m·s−1, cm=10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c m :

particle mass concentrations

c p :

specific heat capacity/J·kg−1·K−1

D h :

hydraulic diameter of the channel/mm

d :

diameter/mm

H :

channel height/mm

h :

heat transfer coefficient/W·m−2·K−1

h sf :

melting latent heat/kJ·kg−1

k :

thermal conductivity/W·m−1·K−1

L :

channel length/mm

Nu :

Nusselt number

Pr :

Prandtl number

q :

heat flux/W·cm−2

Re :

Reynolds number

T :

temperature/K

T 1 :

lower melting temperature/K

T 2 :

upper melting temperature/K

T in :

inlet temperature/K

v :

inlet velocity/m·s−1

y :

core-shell weight ratio

μ :

dynamic viscosity/Pa·s

ρ :

density/kg·m−3

c:

core

f:

base fluid

p:

particle

s:

shell

w:

wall

x:

local section of flow direction

References

  1. Li Y.T., Gong L., Xu M.H., et al., A review of thermo-hydraulic performance of metal foam and its application as heat sinks for electronics cooling. Journal Electronic Packaging, 2021, 143: 030801.

    Article  CAS  Google Scholar 

  2. Bessanane N., Si-Ameur M., Rebay M., Numerical study of the temperature effects on heat transfer coefficient in mini-channel pin-fin heat sink. International Journal of Heat and Technology, 2022, 40: 247–257.

    Article  Google Scholar 

  3. Ding B., Feng W.C., Fang J., et al., How natural convection affect cooling performance of PCM heat sink. International Journal of Heat and Mass Transfer, 2022, 184: 122272.

    Article  CAS  Google Scholar 

  4. Zhang Y., Ding B., Zhao D.Y., et al., Effect of natural convection and diffusion on liquid-liquid phase separation behaviors of partially miscible solutions with lower critical solution temperature. International Journal of Heat and Mass Transfer, 2023, 201: 123566.

    Article  CAS  Google Scholar 

  5. Ding B., Feng W.C., Mu M.-F., et al., A novel method to concurrently enhance heat conduction and natural convection inside PCM thermal buffer. International Journal of Heat and Mass Transfer, 2023, 203: 123773.

    Article  Google Scholar 

  6. Moore G.E., Cramming more components onto integrated circuits. Proceeding of the IEEE, 1998, 86: 82–85.

    Article  Google Scholar 

  7. Ozmat B., Interconnect technologies and the thermal performance of MCM. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992, 15: 860–869.

    Article  Google Scholar 

  8. Anandan S.S., Ramalingam V., Thermal management of electronics: A review of literature. Thermal Science, 2008, 12: 5–26.

    Article  Google Scholar 

  9. Kandlikar S.G., Grande W.J., Evolution of microchannel flow passages - Thermohydraulic performance and fabrication technology. Heat Transfer Engineering, 2003, 24: 3–17.

    Article  ADS  CAS  Google Scholar 

  10. Kanti P.K., Sharma K.V., Minea A.A., et al., Experimental and computational determination of heat transfer, entropy generation and pressure drop under turbulent flow in a tube with fly ash-Cu hybrid nanofluid. International Journal Thermal Sciences, 2021, 167: 107016.

    Article  CAS  Google Scholar 

  11. **ng M.B., Zhang H.F., Zhang C.C., An update review on performance enhancement of refrigeration systems using nano-fluids. Journal of Thermal Science, 2022, 31: 1236–1251.

    Article  ADS  Google Scholar 

  12. Yuan Z.Y., Liang K.F., Xue Y.H., et al., Experimental study of evaluation of dynamical utilization of a microencapsulated phase change material slurry based on temperature range matching analysis. International Communications in Heat and Mass Transfer, 2022, 130: 105788.

    Article  CAS  Google Scholar 

  13. Zhang J.J., Yang C.H., ** Z.G., et al., Experimental study of jet im**ement heat transfer with microencapsulated phase change material slurry. Applied Thermal Engineering, 2021, 188: 116588.

    Article  CAS  Google Scholar 

  14. Lin Q., Wang S.G., Zhang L., Multi-scale modeling and investigation of thermo-fluidic performance of microencapsulated phase-change material slurry. Journal of Energy Storage, 2021, 37: 102502.

    Article  Google Scholar 

  15. Rehman T.-U., Ambreen T., Niyas H., et al., Experimental investigation on the performance of RT-44HC-nickel foam-based heat sinks for thermal management of electronic gadgets. International Journal of Heat and Mass Transfer, 2022, 188: 122591.

    Article  CAS  Google Scholar 

  16. Ghoghaei M.S., Mahmoudian A., Mohammadi O., et al., A review on the applications of micro-/nano-encapsulated phase change material slurry in heat transfer and thermal storage systems. Journal Thermal Analysis and Calorimetry, 2021, 145: 245–268.

    Article  CAS  Google Scholar 

  17. Ho C.J., Chen W.C., Yan W.M., Experiment on thermal performance of water-based suspensions of Al2O3 nanoparticles and MEPCM particles in a minichannel heat sink. International Journal of Heat and Mass Transfer, 2014, 69: 276–284.

    Article  CAS  Google Scholar 

  18. Ho C.J., Chen W.C., Yan W.M., Experimental study on cooling performance of minichannel heat sink using water-based MEPCM particles. International Communications in Heat Mass Transfer, 2013, 48: 67–72.

    Article  CAS  Google Scholar 

  19. Wang Y., Chen Z.Q., Ling X., An experimental study of the latent functionally thermal fluid with micro-encapsulated phase change material particles flowing in microchannels. Applied Thermal Engineering, 2016, 105: 209–216.

    Article  CAS  Google Scholar 

  20. Chen M., Wang Y., Liu Z.M., Experimental study on micro-encapsulated phase change material slurry flowing in straight and wavy microchannels. Applied Thermal Engineering, 2021, 190: 116841.

    Article  Google Scholar 

  21. Hu X., Zhang Y., Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries laminar flow in a circular tube with constant heat flux. International Journal of Heat and Mass Transfer, 2002, 45: 3163–3172.

    Article  Google Scholar 

  22. Seyf H.R., Zhou Z., Ma H.S., et al., Three dimensional numerical study of heat-transfer enhancement by nano-encapsulated phase change material slurry in microtube heat sinks with tangential im**ement. International Journal of Heat and Mass Transfer, 2013, 56: 561–573.

    Article  CAS  Google Scholar 

  23. Dai H., Chen W., Numerical investigation of heat transfer in the double-layered minichannel with microencapsulated phase change suspension. International Communications in Heat Mass Transfer, 2020, 119: 104918.

    Article  CAS  Google Scholar 

  24. Languri E.M., Rokni H.B., Alvarado J., et al., Heat transfer analysis of microencapsulated phase change material slurry flow in heated helical coils: A numerical and analytical study. International Journal of Heat and Mass Transfer, 2018, 118: 872–878.

    Article  CAS  Google Scholar 

  25. Shaukat R., Anwar Z., Imran S., et al., Numerical study of heat transfer characteristics of mPCM slurry during freezing. Arabian Journal for Science and Engineering, 2021, 46: 7977–7988.

    Article  Google Scholar 

  26. Savithiri S., Pattamatta A., Das S.K., Scaling analysis for the investigation of slip mechanisms in nanofluids. Nanoscale Research Letters, 2011, 6: 471.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rashidi S., Esfahani J.A., Ellahi R., Convective heat transfer and particle motion in an obstructed duct with two side by side obstacles by means of DPM Model. Applied Science-Basel, 2017, 7: 431.

    Article  Google Scholar 

  28. Shi X.J., Li S., Wei Y.D., et al., Numerical investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in a microchannel. International Communications in Heat Mass Transfer, 2018, 90: 111–120.

    Article  CAS  Google Scholar 

  29. Sheikhalipour T., Abbassi A., Numerical analysis of nanofluid flow inside a trapezoidal microchannel using different approaches. Advanced Powder Technology, 2018, 29: 1749–1757.

    Article  CAS  Google Scholar 

  30. Alquaity A.B.S., Al-Dini S.A., Yilbas B.S., Investigation into thermal performance of nanosized phase change material (PCM) in microchannel flow. International Journal Numerical Methods for Heat and Fluid Flow, 2013, 23: 233–247.

    Article  Google Scholar 

  31. Wu X.H., Yang Z., Chen Y., Duan Y.Y., Simulation studies on heat transfer characteristics of PCM micro-encapsulated fluids based on discrete phase model. CIESC Journal, 2020, 71: 1491–1501.

    CAS  Google Scholar 

  32. Talbot L., Cheng R.K., Schefer R.W., et al., Thermophoresis of particles in a heated boundary layer. Journal of Fluid Mechanics, 1980, 101: 737–758.

    Article  ADS  Google Scholar 

  33. McNAB G.S., MEISEN A., Thermophoresis in liquids. Journal of Colloid and Interface Science, 1973, 44: 339–346.

    Article  ADS  CAS  Google Scholar 

  34. Mahdavi M., Sharifpur M., Meyer J.P., CFD modelling of heat transfer and pressure drops for nanofluids through vertical tubes in laminar flow by Lagrangian and Eulerian approaches. International Journal of Heat and Mass Transfer, 2015, 88: 803–813.

    Article  CAS  Google Scholar 

  35. Ran F.M., Chen Y.K., Cong R.S., et al., Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: A review. Renewable and Sustainable Energy Reviews, 2020, 134: 110101.

    Article  CAS  Google Scholar 

  36. Yang L., Liu S.L., Zheng H.F., A comprehensive review of hydrodynamic mechanisms and heat transfer characteristics for microencapsulated phase change slurry (MPCS) in circular tube. Renewable and Sustainable Energy Reviews, 2019, 114: 109312.

    Article  Google Scholar 

  37. Chai L., Shaukat R., Wang L., et al., A review on heat transfer and hydrodynamic characteristics of nano/microencapsulated phase change slurry (N/MPCS) in mini/microchannel heat sinks. Applied Thermal Engineering, 2018, 135: 334–349.

    Article  CAS  Google Scholar 

  38. Rao Y., Dammel F., Stephan P., et al., Convective heat transfer characteristics of microencapsulated phase change material suspensions in minichannels. Heat and Mass Transfer, 2007, 44: 175–186.

    Article  ADS  CAS  Google Scholar 

  39. Ran F.M., Xu C.L., Chen Y.K., et al., Numerical flow characteristics of microencapsulated phase change slurry flowing in a helically coiled tube for thermal energy storage. Energy, 2021, 223: 120128.

    Article  Google Scholar 

  40. Mohammadpour J., Lee A., Mozafari M., et al., Evaluation of Al2O3-Water nanofluid in a microchannel equipped with a synthetic jet using single-phase and Eulerian-Lagrangian models. International Journal of Thermal Sciences, 2021, 161: 106705.

    Article  CAS  Google Scholar 

  41. Ounis H., Ahmadi G., McLaughlin J.B., Brownian diffusion of submicrometer particles in the viscous sublayer. Journal of Colloid and Interface Science, 1991, 143: 266–277.

    Article  ADS  CAS  Google Scholar 

  42. Das S.K., Choi S.U., Yu W., et al., Nanofluids: science and technology. John Wiley & Sons, 2007.

  43. Mahian O., Kolsi L., Amani M., et al., Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Physics Reports-Review Section of Physics Letters, 2019, 790: 1–48.

    MathSciNet  CAS  Google Scholar 

  44. Marshall J., Li S., Adhesive particle flow: A discrete element approach. Cambridge University Press, 2014.

  45. Brown R., XXVII. A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philosophical Magazine Series 2, 1828, 4: 161–173.

    Article  Google Scholar 

  46. Michaelides E.E., Wall effects on the Brownian movement, thermophoresis, and deposition of nanoparticles in liquids. Journal of Fluids Engineering, 2016, 138: 051303.

    Article  Google Scholar 

  47. Tahir S., Mital M., Numerical investigation of laminar nanofluid develo** flow and heat transfer in a circular channel. Applied Thermal Engineering, 2012, 39: 8–14.

    Article  CAS  Google Scholar 

  48. Ranz W.E., Marshall W.R., Evaporation from drops, part I. Chemical Engineering Progress, 1952, 48: 141–146.

    CAS  Google Scholar 

  49. Apte S.V., Mahesh K., Lundgren T., Accounting for finite-size effects in simulations of disperse particle-laden flows. International Journal of Multiphase Flow, 2008, 34: 260–271.

    Article  CAS  Google Scholar 

  50. Zeng R.L., Wang X., Chen B.J., et al., Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux. Applied Energy, 2009, 86: 2661–2670.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the National Natural Science Foundation of China (No. U20A20299), the Natural Science Foundation of Guangdong Province (No. 2019A1515012119).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lisi Jia or Bin Ding.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, Z., Jia, L. et al. Numerical Investigation on Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurry in a Rectangular Minichannel. J. Therm. Sci. 33, 564–577 (2024). https://doi.org/10.1007/s11630-024-1860-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-024-1860-0

Keywords

Navigation