Log in

Analysis of the Pyrolysis of Solid Recovered Fuel and Its Sorted Components by using TG-FTIR and DAEM

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Currently, waste disposal has been highlighted strategically all over the world. Solid recovered fuel (SRF) with a high calorific value is manufactured from municipal solid waste (MSW). Thermogravimetric Fourier transform infrared spectroscopy (TG-FTIR) and distributed activation energy model (DAEM) were utilized to study the pyrolysis of the individual components and their mixture (i.e. SRF), which were obtained from a MSW incineration power plant. The best operating conditions were defined by comparing the effect of heating rates and flow rates of sweep gas. The gaseous products and functional groups in the pyrolysis of each component and their mixture were researched. Additionally, a direct search method was presented to obtain the DAEM kinetic parameters. DAEM equations for volatile products were given to describe pyrolysis of SRF. The model prediction results are consistent with the experimental results. The kinetic data will provide a basis for gas composition regulation from theoretical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T i :

initial temperature in volatilization process/°C

T f :

final temperature in volatilization process/°C

T px :

temperatures at the peaks x in DTG curves/°C

ΔT 1/2 :

temperature range of (dω/dτ)/(dω/dτ)max=1/2/°C

(dω/dτ)max :

maximal devolatilization rate in absolute value form

A:

ash

ad:

air dry basis

CFD:

Computational Fluid Dynamics

DAEM:

distributed activation energy model

Fc:

fixed carbon

FTIR:

Fourier transform infrared spectroscopy

M:

moisture

MBT:

mechanical-biological treatment

MSW:

municipal solid waste

SRF:

solid recovered fuel

TG:

Thermogravimetric

V:

volatile matter

References

  1. National Bureau of Statistics of China, China Statistical Yearbook 2019. China Statistics Press, 2019.

  2. Wagland S.T., Kilgallon P., Coveney R., et al., Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidized bed reactor. Waste Management (New York, N.Y.), 2011, 31(6): 1176–1183. DOI: https://doi.org/10.1016/j.wasman.2011.01.001.

    Article  Google Scholar 

  3. Dunnu G., Maier J., Gerhardt A., Thermal utilization of solid recovered fuels in pulverized coal power plants and industrial furnaces as part of an integrated waste management concept. Appropriate Technologies for Environmental Protection in the Develo** World: Selected Papers from ERTEP 2007, July 17–19 2007, Ghana, Africa; Yanful, E. K., Ed.; Springer Netherlands, 2009, pp. 83–91. DOI: https://doi.org/10.1007/978-1-4020-9139-1_10.

    Chapter  Google Scholar 

  4. Edo-Alcón N., Gallardo A., Colomer-Mendoza F.J., Characterization of SRF from MBT plants: Influence of the input waste and of the processing technologies. Fuel Processing Technology, 2016, 153: 19–27. DOI: https://doi.org/10.1016/j.fuproc.2016.07.028.

    Article  Google Scholar 

  5. Chen L., Wang X., Yang H., et al., Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS. Journal of Analytical and Applied Pyrolysis, 2015, 113: 499–507. DOI: https://doi.org/10.1016/j.jaap.2015.03.018.

    Article  Google Scholar 

  6. Chen L., Yu Z., Liang J., et al., Co-pyrolysis of chlorella vulgaris and kitchen waste with different additives using TG-FTIR and Py-GC/MS. Energy Conversion and Management, 2018, 177: 582–591. DOI: https://doi.org/10.1016/j.enconman.2018.10.010.

    Article  Google Scholar 

  7. Fang S., Yu Z., Ma X., et al., Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model). Energy, 2018, 143: 517–532. DOI: https://doi.org/10.1016/j.energy.2017.11.038.

    Article  Google Scholar 

  8. Fang S., Yu Z., Ma X., et al., Co-pyrolysis characters between combustible solid waste and paper mill sludge by TG-FTIR and Py-GC/MS. Energy Conversion and Management, 2017, 144: 114–122. DOI: https://doi.org/10.1016/j.enconman.2017.04.046.

    Article  Google Scholar 

  9. Kai X., Li R., Yang T., et al., Study on the co-pyrolysis of rice straw and high density polyethylene blends using TG-FTIR-MS. Energy Conversion and Management, 2017, 146: 20–33. DOI: https://doi.org/10.1016/j.enconman.2017.05.026.

    Article  Google Scholar 

  10. Lin Y., Liao Y., Yu Z., et al., A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS. Energy Conversion and Management, 2017, 151: 190–198. DOI: https://doi.org/10.1016/j.enconman.2017.08.062.

    Article  Google Scholar 

  11. Peng X., Ma X., Lin Y., et al., Co-pyrolysis between microalgae and textile dyeing sludge by TG-FTIR: Kinetics and products. Energy Conversion and Management, 2015, 100: 391–102. DOI: https://doi.org/10.1016/j.enconman.2015.05.025.

    Article  Google Scholar 

  12. Fang C., Jiang X., Lv G., et al., Chemical synthesis residual pyrolysis and combustion: kinetics and evolved gases investigated by TG-FTIR. Journal of Thermal Science, 2020, 29(1): 108–114. DOI: https://doi.org/10.1007/s11630-019-1140-6.

    Article  ADS  Google Scholar 

  13. Wu J., Chen T., Luo X., et al., TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS. Waste Management, 2014, 34(3): 676–682. DOI: https://doi.org/10.1016/j.wasman.2013.12.005.

    Article  Google Scholar 

  14. Zhou H., Long Y., Meng A., et al., Interactions of three municipal solid waste components during co-pyrolysis. Journal of Analytical and Applied Pyrolysis, 2015, 111: 265–271. DOI: https://doi.org/10.1016/j.jaap.2014.08.017.

    Article  Google Scholar 

  15. Nzioka A.M., Kim M.-G., Hwang H.-U., et al., Kinetic study of the thermal Decomposition Process of Municipal Solid Waste Using TGA. Waste Biomass Valor, 2019, 10(6): 1679–1691. DOI: https://doi.org/10.1007/s12649-017-0183-8.

    Article  Google Scholar 

  16. Góneş M., Güneş S., A direct search method for determination of DAEM kinetic parameters from nonisothermal TGA data (note). Applied Mathematics and Computation, 2002, 130(2): 619–628. DOI: https://doi.org/10.1016/S0096-3003(01)00124-2.

    Article  MathSciNet  MATH  Google Scholar 

  17. Anthony D.B., Howard J.B., Coal devolatilization and hydrogastification. AIChE Journal, 1976, 22(4): 625–656. DOI: https://doi.org/10.1002/aic.690220403.

    Article  ADS  Google Scholar 

  18. Yan J.H., Zhu H.M., Jiang X.G., et al., Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model. Journal of hazardous materials 2009, 162(2–3): 646–651. DOI: https://doi.org/10.1016/j.jhazmat.2008.05.077.

    Article  Google Scholar 

  19. Taro S., Nakorn W., Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel, 2008, 87(3): 414–421. DOI: https://doi.org/10.1016/j.fuel.2007.05.004.

    Article  Google Scholar 

  20. Qiao Y., Xu F., Xu S., et al., Pyrolysis characteristics and kinetics of typical municipal solid waste components and their mixture: Analytical TG-FTIR study. Energy Fuels, 2018, 32(10): 10801–10812. DOI: https://doi.org/10.1021/acs.energyfuels.8b02571.

    Article  Google Scholar 

  21. Wu L., Jiang X., Lv G., et al., Interactive effect of the sorted components of solid recovered fuel manufactured from municipal solid waste by thermogravimetric and kinetic analysis. Waste management (New York, N.Y.), 2019, 102: 270–280. DOI: https://doi.org/10.1016/j.wasman.2019.10.054.

    Article  Google Scholar 

  22. Miura K., A new and simple method to estimate f(E) and k0(E) in the distributed activation energy model from three sets of experimental data. Energy Fuels, 1995, 9(2): 4–7.

    Article  Google Scholar 

  23. Tia S., Bhattacharya S.C., Wibulswas P., Thermogravimetric analysis of Thai lignite—I. pyrolysis kinetics. Energy Conversion and Management, 1991, 31(3): 265–276. DOI: https://doi.org/10.1016/0196-8904(91)90080-3.

    Article  Google Scholar 

  24. **ang Y.H., Wang Y., Zhang J.M., et al., Study on combustion kinetics of partial gasified coal char by using distributed activation energy model. Journal of Combustion Science & Technology, 2003, 9(6): 566–570.

    Google Scholar 

  25. Wójtowicz M.A., Bassilakis R., Smith W.W., et al., Modeling the evolution of volatile species during tobacco pyrolysis. Journal of Analytical & Applied Pyrolysis, 2003, 66(1–2): 235–261.

    Article  Google Scholar 

  26. Cai J., Ji L., Pattern search method for determination of DAEM kinetic parameters from nonisothermal TGA data of biomass. Journal of Mathematical Chemistry, 2007, 42(3): 547–553. DOI: https://doi.org/10.1007/s10910-006-9130-9.

    Article  MathSciNet  MATH  Google Scholar 

  27. Sang S., Duan Y., Chen H., et al., TG-FTIR analysis on pyrolysis characteristics of waste plastics. Environmental Science & Technology, 2013, 36(2): 159–163. DOI: https://doi.org/10.3969/j.issn.1003-6504.2013.02.033.

    Google Scholar 

  28. Zhu H., Study on pyrolysis and incineration of medical waste including the numerical simulation of three-stage rotary kiln incinerator. Zhejiang University, China, 2009.

    Google Scholar 

  29. Sørum L., Grønli M.G., Hustad J.E., Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel, 2001, 80(9): 1217–1227. DOI: https://doi.org/10.1016/S0016-2361(00)00218-0.

    Article  Google Scholar 

  30. Bai J.S., Yu C.J., Wu P., et al., TG-FTIR analysis on pyrolysis characteristics of refuse-derived fuel. CIESC Journal, 2013, 64(3): 1042–1048.

    Google Scholar 

  31. Tian B., Qiao Y., Bai L., et al., Pyrolysis behavior and kinetics of the trapped small molecular phase in a lignite. Energy Conversion and Management, 2017, 140: 109–120. DOI: https://doi.org/10.1016/j.enconman.2017.02.077.

    Article  Google Scholar 

  32. Ma Y., Wang J., Zhang Y., TG-FTIR study on pyrolysis of waste printing paper. Journal of Thermal Analysis and Calorimetry, 2017, 129(2): 1225–1232. DOI: https://doi.org/10.1007/s10973-017-6218-3.

    Article  Google Scholar 

  33. Xu F., Wang B., Yang D., et al., TG-FTIR and Py-GC/MS study on pyrolysis mechanism and products distribution of waste bicycle tire. Energy Conversion and Management, 2018, 175: 288–297. DOI: https://doi.org/10.1016/j.enconman.2018.09.013

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Key Research and Development Program of China (2018YFC1901302, 2018YFF0215001, 2017YFC0703100), the Innovative Research Groups of the National Natural Science Foundation of China (51621005), the National Natural Science Foundation of China (51676172), and the Fundamental Research Funds for the Central Universities (No. 2018FZA4010, 2016FZA4010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuguang Jiang.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Jiang, X., Lv, G. et al. Analysis of the Pyrolysis of Solid Recovered Fuel and Its Sorted Components by using TG-FTIR and DAEM. J. Therm. Sci. 32, 1671–1683 (2023). https://doi.org/10.1007/s11630-023-1714-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1714-1

Keywords

Navigation