Log in

A Review on Thermal Design of Liquid Droplet Radiator System

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Liquid Droplet Radiator (LDR) system is regarded as a quite promising waste heat rejection system for aerospace engineering. A comprehensive review on the state-of-the-art of LDR system was carried out. The thermal design considerations of crucial components such as working fluid, droplet generator and collector, intermediate heat exchanger, circulating pump and return pipe were reviewed. The state-of-the-art of existing mathematical models of radiation and evaporation characteristics of droplet layer from literatures were summarized. Furthermore, thermal designs of three LDR systems were completed. The weight and required planform area between the rectangular and triangular LDR systems were respectively compared and the evaporation models for calculating the mass loss were evaluated. Based on the review, some prospective studies of LDR system were put forward in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

dA :

area differential element

c p :

specific heat capacity

D :

diameter of nozzle

D ab :

diffusion coefficient of liquid molecule

D ab,0 :

initial diffusion coefficient of liquid molecule

d :

diameter of droplet

E ev :

evaporation rate of the droplet

E n(x):

\(E_n(x)=\int_{0}^{1} \mu^{n-2}e^{(-x/\mu)}d\mu\)

F :

function of temperature profile

F :

frequency

f :

friction factor, dimensionless

G :

function of optical thickness or radius in profile of Ĩ1/4

h :

enthalpy

h sl :

latent heat of phase change

h r :

heat transfer coefficient of each droplet

I :

source function in absorbing-scattering layer; \(\tilde{I}=\pi{I}/\sigma{T_i^4}\)

I λ :

radiation intensity

I λ,b :

radiation intensity of black body

j :

Colburn factor, dimensionless

k :

dimensionless wave number, kDF/u

L :

length of droplet layer

M :

molecular weight

:

rate of mass loss per unit area

N :

the number of droplet layers

n :

the number of droplets per unit volume

P :

radiation power of the droplet layer

p :

pressure

p 0 :

saturated vapor pressure of plane surface

Q ev :

evaporation loss rate of the droplet layer

Q r :

overall radiation heat flux

q ev :

evaporation loss rate of per area of the droplet layer

q m :

evaporation mass flux of the droplet layer

q r :

radiation heat flux per area

R :

radius of droplet

R′:

universal gas constant, 8.3145 J/(mol·K)

r :

radius

S :

thickness of droplet layer

s :

spacing of droplet

T :

temperature

T e :

effective radiation temperature

T m :

melting point temperature

T rf :

the reference temperature

T 0 :

inlet temperature of droplet layer

T 1 :

outlet temperature of droplet layer

T :

the environment temperature

t :

time

U :

function of velocity profile

u :

velocity

V :

volume

dV :

volume differential element

W :

width of droplet layer

X :

shape factor matrix

X :

dimensionless variable, X=x/D

x :

coordinate

y :

coordinate

d:

droplet

j:

liquid jet

l:

the length direction of droplet layer

M:

mean value

s:

the thickness direction of droplet layer

v:

vapor

w:

the width direction of droplet layer

l:

liquid phase

s:

solid phase

′:

dummy variable of integration

α :

absorption coefficient of droplet layer

α 0 :

absorptivity of the droplet

β :

growth factor

γ :

surface tension coefficient

ε :

emittance

ε fd :

emittance of droplet layer in “fully developed” transient region

ζ :

radiation emission per unit volume

Θ :

dimensionless normalized temperature

θ :

defined angle

κ :

optical thickness

κ D :

optical thickness of the droplet layer

λ :

thermal conductivity

ρ :

density

ρ d :

specific mass of the droplet

ρ s :

specific mass of the droplet layer

ρ r :

electrical resistivity

σ :

Stefan-Boltzmann constant, σ=5.67×10−8 W/(m2·K)

σ s :

scattering coefficient of droplet layer

ϕ :

defined angle

Ω :

Albedo for scattering =σs/(σ+σs)

ω :

solid angle

LDHX:

Liquid Droplet Heat Exchanger

LDR:

Liquid Droplet Radiator

OSF:

Offset Strip Fin

SSR:

Solid Surface Radiator

References

  1. Kiwan S., Al-Nimr M.A., Using porous fins for heat transfer enhancement. Journal of Heat Transfer, 2001, 123(4): 790–795.

    Article  Google Scholar 

  2. Qin J., Ning D.P., Feng Y., et al., A new method of thermal protection by opposing jet for a hypersonic aeroheating strut. Journal of Thermal Science, 2017, 26: 282–288.

    Article  ADS  Google Scholar 

  3. Ma J., Sun Y.S., Li B.W., Chen H., Spectral collocation method for radiative-conductive porous fin with temperature dependent properties. Energy Conversion & Management, 2016, 111: 279–288.

    Article  Google Scholar 

  4. Cheng K., Qin J., Sun H., et al., Performance assessment of a closed-recuperative-Brayton-cycle based integrated system for power generation and engine cooling of hypersonic vehicle. Aerospace Science and Technology, 2019, 87: 278–288.

    Article  Google Scholar 

  5. Ku J., Ottenstein L., Douglas D., et al., Validation design for a multi-evaporator miniature loop heat pipe for spacecraft applications. Journal of Spacecraft & Rockets, 2012, 49(6): 1008–1018.

    Article  ADS  Google Scholar 

  6. Meng Q., Yang T., Li C., Numerical simulations and analyses of temperature control loop heat pipe for space CCD camera. Journal of Thermal Science, 2016, 25(5): 402–409.

    Article  ADS  Google Scholar 

  7. Wang L., Miao J., Gong M., et al., Research on the heat transfer characteristics of a loop heat pipe used as mainline heat transfer mode for spacecraft. Journal of Thermal Science, 2019, 28(6): 736–744.

    Article  ADS  Google Scholar 

  8. Qin H., Wang C., Zhang D., et al., Radiative and evaporative characteristics analysis of a liquid droplet layer for space applications. Aerospace science and Technology, 2019, 95: 105434.

    Article  Google Scholar 

  9. Brandhorst H.W., Rodiek J., A liquid sheet radiator for a lunar stirling power system. AIAA Journal, 2000, DOI: https://doi.org/10.2514/6.2006-4101.

    Google Scholar 

  10. Mattick A.T., Hertzberg A., Liquid droplet radiators for heat rejection in space. Journal of Energy, 1980, 5(6): 387–393.

    Article  Google Scholar 

  11. Mattick A.T., Hertzberg A., The liquid droplet radiator—an ultralightweight heat rejection system for efficient energy conversion in space. Acta Astronautica, 1982, 9(3): 165–172.

    Article  ADS  Google Scholar 

  12. Matick A.T., Taussig R.T., Droplet radiator systems for spacecraft thermal control. Journal of Spacecraft and Rockets, 1986, 23(1): 10–17.

    Article  ADS  Google Scholar 

  13. Pfeiffer S.L., Conceptual design of liquid droplet radiator shuttle-attached experiment technical requirements document. NASA, Bethpage, NY, United States, 1989.

    Google Scholar 

  14. Tagliafico L.A., Devia F., Thermal design of a liquid droplet radiator. 22nd International Conference on Environmental Systems, Seattle 1992, DOI: https://doi.org/10.4271/921205.

    Google Scholar 

  15. Tagliafico L.A., Massardo A.F., Fossa M., et al., Solar space power system optimization with ultralight radiator. Journal of Propulsion & Power, 1997, 13(4): 560–564.

    Article  Google Scholar 

  16. Tagliafico L.A., Fossa M., Lightweight radiator optimization for heat rejection in space. Heat and Mass Transfer, 1997, 32(4): 239–244.

    Article  ADS  Google Scholar 

  17. Tagliafico L.A., Fossa M., Liquid sheet radiators for space power systems. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 1999, 213(213): 399–406.

    Article  Google Scholar 

  18. Totani T., Kodama T., Nagata H., et al., Thermal design of liquid droplet radiator for space solar-power system. Journal of Spacecraft and Rockets, 2005, 42(3): 493–499.

    Article  ADS  Google Scholar 

  19. Brown R.F., Kosson R., Liquid droplet radiator sheet droplet radiator sheet design considerations. Advanced Energy Systems-Their Role in Our Future, American Nuclear Society, La Grange Park, IL, 1984, 1: 330–338.

    Google Scholar 

  20. Mankaymer M.M., et al., Liquid droplet radiator system investigation. AFRPL TR-85-080, 1985, pp. 78–83.

    Google Scholar 

  21. Mattick A., Hertzberg A., New thermal management and heat rejection systems for space applications. AFRPL TR-85-080, 1984.

    Google Scholar 

  22. White K.A., Liquid droplet radiator development status. AIAA Journal, 1987. DOI: https://doi.org/10.2514/6.1987-1537.

    Google Scholar 

  23. Orme M., Muntz E.P., Applications to space operations of free-flying, controlled streams of liquids. Journal of Spacecraft and Rockets, 1986, 23(4): 411–419.

    Article  ADS  Google Scholar 

  24. Orme M., Farnham T., Diep V., et al., The design and performance of a multi-stream droplet generator for the liquid droplet radiator. Thermophysics Conference. AIAA, 22nd Thermophysics Conference, 1987. DOI: https://doi.org/10.2514/6.1987-1538.

    Google Scholar 

  25. Orme M., Muntz E.P., Characteristics, control, and uses of liquid streams in space. AIAA Journal, 1987, 25(5): 746–756.

    Article  ADS  Google Scholar 

  26. Orme M., Muntz E.P., New technique for producing highly uniform droplet streams over an extended range of disturbance wave numbers. Review of Scientific Instruments, 1987, 58(2): 279.

    Article  ADS  Google Scholar 

  27. Orme M., Muntz E.P., Farnham T., et al., Liquid droplet generation. 1989, NASA Contractor Report 182246.

    Google Scholar 

  28. Orme M., Muntz E.P., The manipulation of capillary stream breakup using amplitude—modulated disturbances: A pictorial and quantitative representation. Physics of Fluids A: Fluid Dynamics, 1990, 2(7): 1124–1140.

    Article  ADS  Google Scholar 

  29. Orme M., Willis K., Nguyen T.V., Droplet patterns from capillary stream breakup. Physics of Fluids A: Fluid Dynamics, 1993, 5(1): 80–90.

    Article  ADS  Google Scholar 

  30. Orme M., Willis K.D., Experiments on the dynamics of droplet collisions in a vacuum. Experiments in Fluids, 2000, 29(4): 347–358.

    Article  ADS  Google Scholar 

  31. Orme M., Willis K.D., Binary droplet collisions in a vacuum environment: an experimental investigation of the role of viscosity. Experiments in Fluids, 2003, 34(1): 28–41.

    Article  ADS  Google Scholar 

  32. Totani T., Itami M., Nagata H., et al., Performance of droplet generator and droplet collector in liquid droplet radiator under microgravity. Microgravity-Science and Technology, 2002, 13(2): 42–45.

    Article  ADS  Google Scholar 

  33. Totani T., Itami M., Nagata H., et al., Measurement technique for pum** performance of a centrifugal collector under microgravity. Review of Scientific Instruments, 2004, 75(2): 515.

    Article  ADS  Google Scholar 

  34. Koroteev A.A., Konyukhov G.V., Study of generation and collection of monodisperse droplets flows in microgravity and vacuum. Journal of Aerospace Engineering, 2007, 20(2): 124–127.

    Article  Google Scholar 

  35. Koroteev A.A., PopushinA E.S., Samsono V.A.B., Regularity research of droplet sheet passive collectors functioning in radiator systems under the open space conditions. Energetika, 2014, (4): 82–95.

    Google Scholar 

  36. Krause P.J., Analysis of a liquid droplet radiator by Galerkin’s method with an improved profile. Rice University, USA, 1989.

    Google Scholar 

  37. Koroteev A.A., Bondarevaa N.V., et al., Method of analytical calculation and optimization for geometrical sizes of dispersed shroud of new age none-carcass space based liquid droplet radiators. Energetika, 2010, (6): 129–139.

    Google Scholar 

  38. Koroteev A.A., Generalized thermal characteristics of liquid droplet radiators in low and median temperature ranges. Energetika, 2013, (4): 108–117.

    Google Scholar 

  39. Koroteev A.A., Nagel U.A., Filatov N.I., Development verification of the liquid droplet radiator models under the microgravity and deep vacuum conditions. Energetika, 2015, (5): 81–89.

    Google Scholar 

  40. Koroteev A.A., Safronov A.A., Filatov N.I., Influence of the structure of a droplet sheet on the capacity of frameless space radiators and the efficiency of the power units. High Temperature, 2016, 54(5): 767–770.

    Article  Google Scholar 

  41. Koroteeva A.A., Bondarevaa N.V., et al., Optimal operational modes for frameless space radiators with organosilicon ultrahigh coolant. Thermal Engineering, 2016, 63(13): 964–970.

    Article  ADS  Google Scholar 

  42. Aeritalia AA.W., Hybrid radiator technology study. ESA final report 6481(85) NL/PB(SC), Turin, 1990.

    Google Scholar 

  43. Juhasz A.J., Chubb D.L., Design considerations for space radiators based on the liquid sheet (LSR) concept. Proceeding of IECEC, 1991, 6: 48–53.

    Google Scholar 

  44. Leandro G., Zanier S., Radiatori termici per applicazioni spaziali. Genoa University, Italy, 1991.

    Google Scholar 

  45. Tilliette Z.P., Energy conversion in space, particular application of gas cycles. General Thermal Review, 1987, 26(312): 667–674.

    Google Scholar 

  46. Siegel R., Transient radiative cooling of a droplet-filled layer. Journal of Heat Transfer, 1987, 109(1): 159–164.

    Article  ADS  Google Scholar 

  47. Siegel R., Transient radiative cooling of an absorbing and scattering cylinder. Journal of Heat Transfer, 1989, 111(1): 199–203.

    Article  ADS  Google Scholar 

  48. Siegel R., Radiative cooling performance of a converging liquid drop radiator. Journal of Thermophysics and Heat Transfer, 1989, 3(1): 46–52.

    Article  ADS  Google Scholar 

  49. Tan H.P., Ruan L.M., Wang P.Y., Liu L.H., **a X.L., Radiation properties and heat transfer of a droplet-filled layer in space radiator. Journal of astronautics, 1999, (04): 33–39 (in Chinese).

    Google Scholar 

  50. Tan H.P., Wang P.Y., **a X.L., Transient radiation heat transfer in liquid droplet layer of a space radiator. Journal of Harbin Institute of Technology, 1999, (02): 85–88 (in Chinese).

    Google Scholar 

  51. Ye H., Ma Y.L., Combined radiation-evaporation model of a liquid droplet layer in space. Journal of Heat Transfer, 2011, 11(133): 111502.

    Article  Google Scholar 

  52. Buch R.R., Huntress A.R., Organosiloxane working fluids for the liquid droplet radiator. NASA CR-175033, 1985.

    Google Scholar 

  53. Gulino D.A., Coles C.E., Oxygen plasma effects on several liquid droplet radiator fluids. Journal of Spacecraft and Rockets, 1988, 25(2): 99–101.

    Article  ADS  Google Scholar 

  54. Mattick A.T., Hertzberg A., Liquid droplet radiator performance studies. Acta Astronautica, 1985, 12(7–8): 591–598.

    Article  ADS  Google Scholar 

  55. Presler A.F., Coles C.E., Diem-Kirsop P.S., White K.A., Liquid droplet radiator program at the NASA Lewis Research Center. NASA TM-87139, 1986.

    Google Scholar 

  56. Totani T., Kodama T., Watanabe K., et al., Numerical and experimental studies on circulation of working fluid in liquid droplet radiator. Acta Astronautica, 2006, 59(1–5): 192–199.

    Article  ADS  Google Scholar 

  57. Bogy B.D., Drop formation in a circular liquid jet. Annual Review of Fluid Mechanics, 1979, 11(1): 207–228.

    Article  ADS  Google Scholar 

  58. Chaudhary K.C., Redekopp L.G., The non-linear capillary instability of a liquid jet. Journal of Fluid Mechanics, 1980, 96: 257–274.

    Article  MATH  ADS  Google Scholar 

  59. Rayleigh L., On the instability of liquid jets. Proceeding of the Royal Society of London, 1979, 29: 71–97.

    ADS  Google Scholar 

  60. Nayfeh H.A., Nonlinear stability of a liquid jet. Physics of Fluids, 1970, 13(4): 841.

    Article  MATH  ADS  Google Scholar 

  61. Yuen M.C., Non-linear capillary instability of a liquid jet. Journal of Fluid Mechanics, 1968, 33(1): 151–163.

    Article  MATH  ADS  Google Scholar 

  62. Xu Y.F., Chen P.F., Fan L.H., et al., Dynamic characteristics of mono-dispersed droplets generation process by droplet generator. Journal of Astronautics, 2015, 36(9): 1049–1055. (in Chinese)

    Google Scholar 

  63. Xu Y.F., Chen P.F., Sun C., et al., Dynamic characteristics of droplet generator operation process. Journal of Propulsion Technology, 2017, (06): 149–157. (in Chinese)

    Google Scholar 

  64. Wallance D.B., Hayes D.J., Bush J.M., Study of orifice fabrication technologies for the liquid droplet radiator. Report NASA/CR-187114, 1991.

    Google Scholar 

  65. Sievers A.J., Thermal radiation from metal surfaces. Journal of the Optical Society of America, 1978, 68: 1505–1516.

    Article  ADS  Google Scholar 

  66. Totani T., Takekoshi T., Wakita M., et al., Automatic circulation control of working fluid in liquid droplet radiator. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2012, 10(28): Pf_1–Pf_8.

    Google Scholar 

  67. Schneider J.M., Hendricks C.D., Source of uniform-sized liquid droplets. Review of Scientific Instruments. 1964, 35(10): 1349. DOI: https://doi.org/10.1063/1.1718742.

    Article  ADS  Google Scholar 

  68. Dabora E.K., Production of monodisperse sprays. Review of Scientific Instruments, 1967, 38(4): 502.

    Article  ADS  Google Scholar 

  69. Rajagopalan R., Tien C., Production of mono-dispersed drops by forced vibration of a liquid jet. The Canadian Journal of Chemical Engineering, 1973, 51(3): 272–279.

    Article  Google Scholar 

  70. Berglund R.N., Liu B.Y.H., Generation of monodisperse aerosol standards. Environmental Science and Technology, 1973, 7(2): 147–153.

    Article  ADS  Google Scholar 

  71. Queiroz M., Yao S.C., Experimental exploration of the thermal structure of an array of burning droplet streams. Combustion and Flame, 1990, 82(3–4): 346–360.

    Article  Google Scholar 

  72. Brenn G., Lackermeier U., Drop formation from a vibrating orifice generator driven by modulated electrical signals. Physics of Fluids, 1997, 9(12): 3658.

    Article  ADS  Google Scholar 

  73. Patel K.C., Chen X.D., Production of spherical and uniform-sized particles using a laboratory ink-jet spray dryer. Asia-Pacific Journal of Chemical Engineering, 2007, 2(5): 415–430.

    Article  Google Scholar 

  74. Wu W.D., Lin S.X., Chen X.D., Monodisperse droplet formation through a continuous jet break-up using glass nozzles operated with piezoelectric pulsation. AIChE Journal, 2011, 57(6): 1386–1392.

    Article  Google Scholar 

  75. Wang T.J., Lin J., Lei Y.P., et al. Droplets generator: Formation and control of main and satellite droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558: 303–312.

    Article  Google Scholar 

  76. Wu X.C., Lv Q.M., Wu Y.C., et al., Dual-stream of monodisperse droplet generator. Chemical Engineering Science, 2020, 223: 115645.

    Article  Google Scholar 

  77. Calia V., Haslett R., Konopka W., Kosson R., Liquid droplet radiator collector development. Advanced Energy Systems — Their Role in our Future, American Nuclear Society, La Grange Park, IL, 1984, 1: 216–223.

    Google Scholar 

  78. Hosokawa S., Kawada M., Iwasaki A., et al., Observation of collecting process of liquid droplets in liquid droplet radiator. Japan Society for Aeronautical and Space Sciences Journal, 1993, 41(474): 385–390.

    ADS  Google Scholar 

  79. Totani T., Itami M., Nagata H., et al., Measurement technique for pum** performance of a centrifugal collector under microgravity. Review of Scientific Instruments, 2004, 75(2): 515.

    Article  ADS  Google Scholar 

  80. Notter R.H., Sleicher C.A., A solution to the turbulent Graetz problem—III Fully developed and entry region heat transfer rates. Chemical Engineering Science, 1972, 27(11): 2073–2093.

    Article  Google Scholar 

  81. Zheng X., Qi Z., A comprehensive review of offset strip fin and its applications. Applied Thermal Engineering, 2018, 139: 61–75.

    Article  Google Scholar 

  82. Bruckner A.P., Mattick A.T., High effectiveness liquid droplet/gas heat exchanger for space power applications. Acta Astronautica, 1983, 11(7): 519–526.

    ADS  Google Scholar 

  83. Manglik R.M., Bergles A.E., Heat transfer and pressure drop correlations for the rectangular offset strip fin compact heat exchanger. Experimental Thermal and Fluid Science, 1995, 10(2): 171–180.

    Article  Google Scholar 

  84. Wang C.C., Hwang Y.M., Lin Y.T., Empirical correlations for heat transfer and flow friction characteristics of herringbone wavy fin-and-tube heat exchangers. International Journal of Refrigeration, 2002, 25(5): 673–680.

    Article  Google Scholar 

  85. Ali M.M., Ramadhyani S., Experiments on convective heat transfer in corrugated channels. Experimental Heat Transfer, 1992, 5(3): 175–193.

    Article  ADS  Google Scholar 

  86. Dong J.Q., Chen J.P., Chen Z.J., et al. Heat transfer and pressure drop correlations for the wavy fin and flat tube heat exchangers. Applied Thermal Engineering, 2007, 27(11–12): 2066–2073.

    Google Scholar 

  87. Kays W.M., London A.L., Compact heat exchanger. Third edition. New York: Mc Graw-Hiu, 1984.

    Google Scholar 

  88. Kim N.H., Yun J.H., Webb R.L., Heat transfer and friction correlations for wavy plate fin-and-tube heat exchangers. ASME Journal of Heat Transfer, 1997, 119: 560–567.

    Article  Google Scholar 

  89. Mirth D.R., Ramadhyani S., Correlations for predicting the air-side Nusselt numbers and friction factors in chilled-water cooling coils. Experimental Heat Transfer, 1994, 7(2): 143–162.

    Article  ADS  Google Scholar 

  90. Wang C.C., Fu W.L., Chang C.T., Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers. Experimental Thermal and Fluid Science, 1997, 14(2): 174–186.

    Article  Google Scholar 

  91. Wang C.C., Lu D.C., Tsai Y.M., Comprehensive study of convex-louver and wavy fin-and-tube heat exchangers. Journal of Thermophysics and Heat Transfer, 1998, 12(3): 423–430.

    Article  Google Scholar 

  92. Wang C.C., Investigation of wavy fin-and-tube heat exchangers: a contribution to databank. Experimental Heat Transfer, 1999, 12(1): 73–89.

    Article  ADS  Google Scholar 

  93. Wang C.C., Chang J.Y., Chiou N.F., Effects of waffle height on the air-side performance of wavy fin-and-tube heat exchangers. Heat Transfer Engineering, 1999, 20(3): 45–56.

    Article  ADS  Google Scholar 

  94. Bruckner A.P., Hertzberg A., Direct contact droplet heat exchangers for thermal management in space. IECEC 82; Seventeenth Intersociety Energy Conversion Engineering Conference, 1982, 1: 107–112.

    ADS  Google Scholar 

  95. Bruckner A.P., Shariatmadar A., Heat transfer and flow studies of the liquid droplet heat exchanger. Space Nuclear Power Systems 1985; Proceedings of the Second Symposium, Albuquerque, 1987, pp. 119–129.

    Google Scholar 

  96. Bruckner A.P., Shariatmadar A., Hedges D., Liquid droplet heat exchanger studies. Space Nuclear Power Systems 1986; Proceedings of the Third Symposium, Albuquerque, 1987, pp. 151–159.

    Google Scholar 

  97. Edgerton R., Diem-Kirsop P., Liquid droplet radiator thermal characteristics. 2nd Aerospace Maintenance Conference, San Antonio, TX, United States, 1986, pp. 4–14. DOI: https://doi.org/10.2514/6.1986-1162.

    Google Scholar 

  98. Gardon R., The emissivity of transparent materials. Journal of the American Ceramic Society, 1956, 39(8): 278–285.

    Article  Google Scholar 

  99. Gardon R., Calculation of temperature distributions in glass plates undergoing heat-treatment. Journal of the American Ceramic Society, 1958, 41(6): 200–209.

    Article  Google Scholar 

  100. Viskanta R., Bathla P.S., Unsteady energy transfer in a layer of gray gas by thermal radiation. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP), 1967, 18(3): 353–367.

    Article  ADS  Google Scholar 

  101. Viskanta R., Anderson E.E., Heat transfer in semitransparent solids. Advances in Heat Transfer, 1975, 11: 318.

    Google Scholar 

  102. Lii C.C., Ozisik M.N., Transient radiation and conduction in an absorbing, emitting, scattering slab with reflective boundaries. International Journal of Heat and Mass Transfer, 1972, 15(5): 1175–1179.

    Article  Google Scholar 

  103. Kubo S., Unsteady radiation heat transfer in a scattering-dominant medium. AIAA Journal, 1984, 22(12): 1804–1809.

    Article  ADS  Google Scholar 

  104. Siegel R., Transient radiative cooling of a layer filled with solidifying drops. Journal of Heat Transfer, 1987b, 109(4): 977.

    Article  ADS  Google Scholar 

  105. Siegel R., Radiative cooling of a layer with nonuniform velocity-A separable solution. Journal of Thermophysics and Heat Transfer, 1987, 1(3): 228–232.

    Article  ADS  Google Scholar 

  106. Siegel R., Solidification by radiative cooling of a cylindrical region filled with drops. Journal of Thermophysics and Heat Transfer, 1989, 3(3): 340–344.

    Article  ADS  Google Scholar 

  107. Siegel R., Finite difference solution for transient cooling of a radiating-conducting semitransparent layer. Journal of Thermophysics and Heat Transfer, 1992, 6(1): 77–83.

    Article  ADS  Google Scholar 

  108. Siegel R., Molls F.B., Finite difference solution for transient radiative cooling of a conducting semitransparent square region. International Journal of Heat and Mass Transfer, 1992, 35(10): 2579–2592.

    Article  ADS  Google Scholar 

  109. Siegel R., Howell J.R., Thermal radiation heat transfer. Hemisphere Publishing Corporation, 1981.

    Google Scholar 

  110. Tan H.P., Ruan L.M., **a X.L., et al., Transient coupled radiation and conductive heat transfer in an absorbing, emitting and scattering medium. International Journal of Heat and Mass Transfer, 1999, 42(15): 2967–2980.

    Article  MATH  Google Scholar 

  111. Yin J.Y., Liu L.H., Analysis of the radiation heat transfer process of phase change for a liquid droplet radiator in space power systems. Frontiers in Energy, 2011, 5(2): 166–173.

    Article  Google Scholar 

  112. Yin J.Y., Liu L.H., Simulation analysis of droplet phase-change process in a deep-space radiation environment. Journal of Engineering Thermalphysics, 2009, (09): 126–128. (in Chinese)

    Google Scholar 

  113. Yin J.Y., Liu L.H., Analysis on feasibility of effective medium theory for radiation property of coal ash. Proceedings of the CSEE, 2008, 28(14): 50–54. (in Chinese)

    ADS  Google Scholar 

  114. Zeng C. Tan S.C., Qiao S.X., et al., A simplified method for calculating the heat rejection from a rectangle droplet sheet. International Journal of Heat and Mass Transfer, 2019, 132: 762–771.

    Article  Google Scholar 

  115. Wang B.X., Engineering heat and mass transfer. Science Press, Bei**g, 2002, pp. 401–405.

    Google Scholar 

  116. Ma Y.L., Numerical study on radiation and evaporation characteristics of liquid droplet radiator. University of Science and Technology of China, 2010.

    Google Scholar 

  117. Chen P.J., Scientific foundation of vacuum technology. National Defense Industry Press, Bei**g, 1987, Chap. II, pp. 92–93; Chap. V, pp. 233–234.

    Google Scholar 

  118. Alcock C.B., Itkin V.P., Horrigan M.K., Vapour pressure equations for the metallic elements: 298–2500 K. Canadian Metallurgical Quarterly, 1984, 23(3): 309–313.

    Article  Google Scholar 

  119. Chubb D.L., Calfo F.D., Current status of liquid sheet radiator research. NASA Technical Memorandum 1993, report no. 105764.

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China (No.51888103) and Shaanxi Innovation Capability Support Plan (2018TD-014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chong, D., Zhu, M., Zhao, Q. et al. A Review on Thermal Design of Liquid Droplet Radiator System. J. Therm. Sci. 30, 394–417 (2021). https://doi.org/10.1007/s11630-021-1419-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-021-1419-2

Keywords

Navigation