Log in

Shoot propagation, regeneration, and callus induction and differentiation, of Axonopus compressus (Swartz) Beauv

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Axonopus compressus (Swartz) Beauv., a perennial herb in the Poaceae that has been introduced to a number of tropical and subtropical countries and regions, can serve as a lawn ground cover while its leaves can be developed as a bioenergy resource. It also displays some resistance to heavy metals, allowing it to be planted in areas and urban green spaces polluted by heavy metals. A. compressus is also used as a traditional Chinese medicine. This study is the first report on tissue culture of A. compressus. Stem explants induced shoot clusters on 6-benzyladenine (BA)-containing Murashige and Skoog (MS) medium, with 2.0 mg L–1 BA inducing a shoot proliferation coefficient (SPC) of 10.89 within 30 d, while MS medium containing 2.0 mg L–1 BA and 0.1 mg L–1 α-naphthaleneacetic acid (NAA) amplified SPC to 12.88 within 30 d. SPC on MS medium supplemented with kinetin (KIN) or thidiazuron (TDZ) was not as high as on medium with BA and never exceeded 3.57 within 30 d. A. compressus formed adventitious roots easily, within 15 d, most efficiently on ½MS medium supplemented with 0.1 to 0.5 mg L–1 IAA, NAA, or IBA, or even on auxin-free medium. Resulting plantlets displayed a high survival rate (> 98%) when transplanted to a substrate containing humus, or humus mixed with vermiculite or sand. Callus was also successfully induced from leaf sheaths on MS medium containing 1.0 mg L–1 2,4-dichlorophenoxyacetic acid, even more so when 1.15 g L–1 l-proline was added. Induced callus was able to differentiate into adventitious shoots on MS medium with 0.1 to 0.5 mg L–1 KIN or BA. An efficient system of shoot proliferation, callus induction, and regeneration in A. compressus has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Adams J, Samimi C, Mitterer C, Bendix J, Beck E (2022) Comparison of pasture types in the tropical Andes: species composition, distribution, nutritive value and responses to environmental change. Basic Appl Ecol 59:139–150

    Article  Google Scholar 

  • Adomako MO, Yu FH (2023) Effects of resource availability on the growth, Cd accumulation, and photosynthetic efficiency of three hyperaccumulator plant species. J Environ Manage 345:118762

    Article  CAS  PubMed  Google Scholar 

  • Amujoyegbe OO, Idu M, Agbedahunsi JM, Erhabor JO (2016) Ethnomedicinal survey of medicinal plants used in the management of sickle cell disorder in Southern Nigeria. J Ethnopharmacol 185:347–360

    Article  CAS  PubMed  Google Scholar 

  • Anarado CJO, Anarado CE, Nwajide FC, Obiora A, Chukwuma VD, Anarado IL (2020) Effect of fertilizer application on phytoremediating potentials of Euphorbia heterophylla, Axonopus compressus, Emilia coccinea and Scoparia dulcis against Hg2+, Pb2+, Cd2+ and As3+. Orient J Chem 36:17

    Google Scholar 

  • Aregheore EM, Ali I, Ofori K, Rere T (2006) Studies on grazing behavior of goats in the Cook Islands: the animal-plant complex in forage preference/palatability phenomena. Intern J Agr Biol Eng 8:147–152

    Google Scholar 

  • Arunbabu V, Sruthy S, Antony I, Ramasamy EV (2015) Sustainable greywater management with Axonopus compressus (broadleaf carpet grass) planted in sub surface flow constructed wetlands. J Water Process Eng 7:153–160

    Article  Google Scholar 

  • Avilés-Nova F, Espinoza-Ortega A, Castelán-Ortega OA (2008) Sheep performance under intensive continuous grazing of native grasslands of Paspalum notatum and Axonopus compressus in the subtropical region of the highlands of Central Mexico. Trop Anim Health Prod 40:509–515

    Article  PubMed  Google Scholar 

  • Bedoic R, Cucek L, Cosic B, Smoljanic G, Kravanja Z, Ljubas D, Puksec T, Duic N (2019) Green biomass to biogas e a study on anaerobic digestion of residue grass. J Clean Prod 213:700e709

    Article  Google Scholar 

  • Bordoloi S, Ganesan SP, Garg A, Sahoo L, Sekharan S (2023) Investigating soil tip** suction in Axonopus compressus grown in poorly graded sand using a novel framework. Acta Geotech 18:2847–2860

    Article  Google Scholar 

  • Chai M, Jia Y, Chen S, Gao Z, Wang H, Liu L, Wang P, Hou D (2011) Callus induction, plant regeneration, and long-term maintenance of embryogenic cultures in Zoysia matrella [L.] Merr. Plant Cell Tiss Org Cult 104:187–192

    Article  CAS  Google Scholar 

  • Chen Y, Zhou X, Wang Z, Su X, Liu F, Tian X, Ye Y, Shao Y, Yuan Z (2023) Cd contamination determined assembly processes and network stability of AM fungal communities in an urban green space ecosystem. Sci Total Environ 899:166372

    Article  CAS  PubMed  Google Scholar 

  • Chuks KO, Nenibarini Z, Kabari S, Chibuzor NE (2019) Status, progress and challenges of phytoremediation - an African scenario. J Environ Manage 237:365–378

    Article  Google Scholar 

  • Claverie S, Ouattara A, Hoareau M, Filloux D, Varsani A, Roumagnac P, Martin DP, Jean-Michel L, Lefeuvre P (2019) Exploring the diversity of Poaceae-infecting mastreviruses on Reunion Island using a viral metagenomics-based approach. Sci Rep 9:12716

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwiges T, Bastos JA, Alino JHL, d’Avila L, Frare LM, Somer JG (2019) Comparison of various pretreatment techniques to enhance biodegradability of lignocellulosic biomass for methane production. J Environ Chem Eng 7:103495

    Article  CAS  Google Scholar 

  • Giovanna PTJG, Durand-Chávez LM, Quispe-Ccasa HA, Linares-Rivera JL, Portocarrero GTS, Tito RC, Pérez HVV, Quintana JLM, Ampuero-Trigoso G, Rodríguez RRR, Saucedo-Uriarte JA (2023) Sustainability of livestock farms: the case of the district of Moyobamba. Peru Heliyon 9:e13153

    Article  Google Scholar 

  • Giri CC, Praveena M (2015) In vitro regeneration, somatic hybridization and genetic transformation studies: an appraisal on biotechnological interventions in grasses. Plant Cell Tiss Org Cult 120:843–860

    Article  CAS  Google Scholar 

  • Grinnell NA, Linden A, Azhar B, Nobilly F, Slingerland M (2022) Cattle- oil palm integration – a viable strategy to increase Malaysian beef self-sufficiency and palm oil sustainability. Livest Sci 259:104902

    Article  Google Scholar 

  • Hammami R, Cuadrado A, Friero E (2011) Callus induction and plant regeneration from immature embryos of Brachypodium distachyon with different chromosome numbers. Biol Plant 55:797

    Article  Google Scholar 

  • Hazaimeh M, Almansoory AF, Mutalib SA, Kanaan B (2019) Effects of plant density on the bioremediation of soils contaminated with polyaromatic hydrocarbons. Emerg Contam 5:123–127

    Article  Google Scholar 

  • He L (2021) Agro-morphological and metabolomics analysis of low nitrogen stress response in Axonopus compressus. AoB Plants 13:plab022

    Article  PubMed  PubMed Central  Google Scholar 

  • He L, Liao L, Wang Z, Wu Y (2020) The complete chloroplast genome of Axonopus compressus (Sw.) Beauv. and its phylogenetic position. Mitochondrial DNA Part B 5:1441–1442

    Article  Google Scholar 

  • Himanshu K, Ganesan SP, Huang S, Sahoo L, Ankit G, Sekharan S, Leung AK (2022) Exploring relations between plant photochemical quantum parameters and unsaturated soil water retention for biochars and pith amended soils. Sci Total Environ 804:150251

    Article  Google Scholar 

  • Hwang YH, See SC, Patil MA (2021) Short-term vegetation changes in tropical urban parks: patterns and design-management implications. Urban Urban Green 64:127240

    Article  Google Scholar 

  • Ibeh B, Maxwell E, Bitrus JH (2013) Phytochemical compositions and in vitro antioxidant capacity of methanolic leaf extract of Axonopus compressus (P. Beauv.). Europ J Med Plant 3:254–265

    Article  Google Scholar 

  • Ibeh BO, Ezeaja MI (2011) Preliminary study of antidiabetic activity of the methanolic leaf extract of Axonopus compressus (P. Beauv) in alloxan-induced diabetic rats. J Ethnopharmacol 138:713–716

    Article  PubMed  Google Scholar 

  • Koh LH, Yap ML, Yik CP, Niu SN, Wong SM (2008) First report of Phytoplasma infection of grasses in Singapore. Plant Dis 9:317

    Article  Google Scholar 

  • Lee JTE, Wang Q, Lim EY, Liu Z, He J, Tong YW (2020) Optimization of bioaugmentation of the anaerobic digestion of Axonopus compressus cowgrass for the production of biomethane. J Clean Product 258:120932

    Article  CAS  Google Scholar 

  • Li L, Qu R (2004) Development of highly regenerable callus lines and biolistic transformation of turf-type common bermudagrass [Cynodon dactylon (L.) Pers.]. Plant Cell Rep 22:403–407

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Fang XL, Zhang JW, Yan M, Bao M (2009) Long-term cultured callus and the effect factor of high-frequency plantlet regeneration and somatic embryogenesis maintenance in Zoysia japonica. In Vitro Cell Dev Biol - Plant 45:673–680

    Article  CAS  Google Scholar 

  • Liu M, Yang J, Lu S, Guo Z, Lin X, Wu H (2008) Somatic embryogenesis and plant regeneration in centipedegrass (Eremochloa ophiuroides [Munro] Hack.). In Vitro Cell Dev Biol - Plant 44:100–104

    Article  Google Scholar 

  • Lu SY, Wang ZC, Peng XX, Guo Z, Zhang G, Han L (2006) An efficient callus suspension culture system for triploid bermudagrass (Cynodon transvaalensis × C. dactylon) and somaclonal variations. Plant Cell Tiss Org Cult 87:77–84

    Article  Google Scholar 

  • Ma GH, Jian SG, Ren H (eds) (2021) Axonopus compressus (Swartz) Beauv. In: Plant proliferation and cultivation techniques for tropical island reefs. China Forestry Press, Bei**g, pp. 9–11. ISBN: 978–7–5219–0955–5 (in Chinese)

  • Mahieu M, Arquet R, Fleury J, Bonneau M, Mandonnet N (2020) Mixed grazing of adult goats and cattle: lessons from long-term monitoring. Vet Parasitol 280:109087

    Article  PubMed  Google Scholar 

  • Muhammad MM, Shafiq N, Rahman MK, Mohamad SH, Balogun AL (2021) Hydrodynamics of flow over Axonopus compressus (cow grass) as a flexible vegetation. In: Mohammed BS, Shafiq N, Rahman MK, Mohamad SH, Balogun AL (eds) ICCOEE 2020–2021. Lecture Notes in Civil Engineering, vol 132. Springer, Singapore, pp 1–126

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nanjo T, Masatomo K, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari Y, Yanaguchi-Shinozaki K, Shinozaki K (1999) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J 18:185–193

    Article  CAS  PubMed  Google Scholar 

  • Nawaz M, Li L, Azeem F (2021) Insight of transcriptional regulators reveals the tolerance mechanism of carpet-grass (Axonopus compressus) against drought. BMC Plant Biol 21:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawaz M, Wang Z (2020) Abscisic acid and glycine betaine mediated tolerance mechanisms under drought stress and recovery in Axonopus compressus: a new insight. Sci Rep 10:6942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neibaur I, Altpeter GF (2008) The effect of auxin type and cytokinin concentration on callus induction and plant regeneration frequency from immature inflorescence segments of seashore paspalum (Paspalum vaginatum Swartz). In Vitro Cell Dev Biol - Plant 44:480–486

    Article  CAS  Google Scholar 

  • Oluwafemi S, Kraberger S, Shepherd DN, Martin DP, Varsani A (2014) A high degree of African streak virus diversity within Nigerian maize fields includes a new mastrevirus from Axonopus compressus. Arch Virol 159:2765–2770

    Article  CAS  PubMed  Google Scholar 

  • Perera TANT, Jayasinghe GY, Halwatura RU, Rupasinghe HT (2021) Modelling of vertical greenery system with selected tropical plants in urban context to appraise plant thermal performance. Ecol Indic 128:107816

    Article  Google Scholar 

  • Pooja S, Ngo HH, Khanal S, Larroche C, Kim SH, Pandey A (2021) Efficiency of transporter genes and proteins in hyperaccumulator plants for metals tolerance in wastewater treatment: sustainable technique for metal detoxification. Environ Technol Innov 23:101725

    Article  Google Scholar 

  • Redoy MRA, Shuvo AAS, Cheng L, Al-Mamun M (2020) Effect of herbal supplementation on growth, immunity, rumen histology, serum antioxidants and meat quality of sheep. Animal 14:2433–2441

    Article  CAS  PubMed  Google Scholar 

  • Rupasinghe HT, Halwatura RU (2020) Benefits of implementing vertical greening in tropical climates. Urban for Urban Green 53:126708

    Article  Google Scholar 

  • Samarakoon S, Wilson J, Shelton H (1990) Growth, morphology and nutritive quality of shaded Stenotaphrum secundatum, Axonopus compressus and Pennisetum clandestinum. J Agr Sci 114:161–169

    Article  Google Scholar 

  • Sastry KS, Mandal B, Hammond J, Scott SW, Briddon RW (2019) Axonopus compressus (carpet-grass). Encyclopedia of plant viruses and viroids. Springer, New Delhi, pp 233–234

    Chapter  Google Scholar 

  • Shi X, Zhang Y, Wang Y, Chang Q (2023) Understanding and improving nature-related educational ecosystem services in urban green spaces: evidence from app-aided plant identification spatial-hotspots. Ecol Indic 151:110332

    Article  Google Scholar 

  • Singh PK, Indoliya Y, Agrawal L, Awasthi S, Deeba F, Dwivedi S, Chakrabarty D, Shirke PA, Pandey V, Singh N, Dhankher OP, Barik SK, Tripathi RD (2022) Genomic and proteomic responses to drought stress and biotechnological interventions for enhanced drought tolerance in plants. Curr Plant Biol 29:100239

    Article  CAS  Google Scholar 

  • Tan JKN, Belcher RN, Tan HTW, Menz S, Schroepfer T (2021) The urban heat island mitigation potential of vegetation depends on local surface type and shade. Urban Urban Green 62:127128

    Article  Google Scholar 

  • Thu TT, Thao TN, Van TN, Huong THH, Thinh THN, Minh NN (2019) Copper encapsulated in grass-derived phytoliths: characterization, dissolution properties and the relation of content to soil properties. J Environ Manage 249:109423

    Article  Google Scholar 

  • Tohiran KA, Nobilly F, Zulkifli R, Ashton-Butt A, Azhar B (2019) Cattle-grazing in oil palm plantations sustainably controls understory vegetation. Agr Ecosyst Environ 278:54–60

    Article  Google Scholar 

  • Wang RZ (2006) The occurrence of C4 photosynthesis in Yunnan province, a tropical region in South-western China. Photosynthetica 44:286–292

    Article  Google Scholar 

  • Wang X, Wang Z, Liao L, Zhang X (2015) Genetic diversity of carpetgrass germplasm based on simple sequence repeat markers. Hortsci 50:797–800

    Article  CAS  Google Scholar 

  • Wang Y, Ruemmele BA, Chandlee JM, Sullivan WM, Knapp JE, Kausch AP (2002) Embryogenic callus induction and plant regeneration media for bentgrasses and annual bluegrass. In Vitro Cell Dev Biol - Plant 38:460–467

    Article  Google Scholar 

  • Wang Y, Tan SN, Yusof MLM, Ghosh S, Lam YM (2022) Assessment of heavy metal and metalloid levels and screening potential of tropical plant species for phytoremediation in Singapore. Environ Poll 295:118681

    Article  CAS  Google Scholar 

  • Wei ZP, **ong YP, Zeng YJ, Liu JY, Jian SG, Wu KL, Zeng SJ, Teixeira da Silva JA, Ma GH (2023) Protocol for shoot proliferation and regeneration of a salt-tolerant plant, Thuarea involuta. Plant Cell Tiss Org Cult 154:201–207

    Article  CAS  Google Scholar 

  • ** JB, ** C, Zhang HX, Zheng YZ, Yang ZY (2006) Studies on the drought tolerance of wild germplasm resources of Axonopus compressus in China. Acta Prataculturae Sin 15:93–99

    Google Scholar 

  • **a HP (2009) Physiological and cellular ultrastructure responses for three grass species under submergence. Novon 2:100–110

    Google Scholar 

  • **ong YP, Wei ZP, Yu XC, Pang JH, Zhang T, Wu KL, Ren H, Jian SG, Teixeira da Silva JA, Ma GH (2021) Shoot proliferation, embryogenic callus induction, and plant regeneration in Lepturus repens (G. Forst.) R. Br. In Vitro Cell Dev Biol - Plant 57:1031–1039

    CAS  Google Scholar 

  • Yu W, Hu J, Yu Y, Ma D, Gong W, Qiu H, Hu Z, Gao H (2021) Facile preparation of sulfonated biochar for highly efficient removal of toxic Pb2+ and Cd2+ from wastewater. Sci Total Envir 750:141545

    Article  CAS  Google Scholar 

  • Zhang W, Damm U, Crous PW, Groenewald JZ, Li Y (2020) Anthracnose disease of carpetgrass (Axonopus compressus) caused by Colletotrichum hainanense sp. nov. Plant Dis 104:1744–1750

    Article  CAS  PubMed  Google Scholar 

  • Zhang WJ, Dong JL, Liang BG, ** YS, Wang T (2006) Highly efficient embryogenesis and plant regeneration of tall fescue (Festuca arundinacea Schreb.) from mature seed-derived calli. In Vitro Cell Dev Biol - Plant 42:114–118

    Article  CAS  Google Scholar 

  • Zong L, Ding LM, Xue X, Wang T (2010) Regeneration of green plants from seed-derived callus cultures of Poa. Afr J Biotech 9:3091–3098

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research & Development Program of China (2021YFC3100400, 2022YFC3103700) and Guangdong Key Areas Biosafety Project (2022B1111040003).

Author information

  • Contributions

    YPX and ZPW designed the experiment and provided guidance for the study. XHZ and JYL prepared samples for all analyses. YL, ZB, ZPW, KLW, SJZ, and YJZ conducted the experiments and statistical analyses. JATS provided advice, interpretation of the experiment and analyses, and co-wrote the manuscript with GHM. All authors read and approved the manuscript for publication.

    Corresponding author

    Correspondence to Guohua Ma.

    Ethics declarations

    Ethics approval and consent to participate

    Not applicable.

    Consent for publication

    Not applicable.

    Competing interests

    The authors declare no competing interests.

    Rights and permissions

    Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    **ong, Y., Wei, Z., Liu, J. et al. Shoot propagation, regeneration, and callus induction and differentiation, of Axonopus compressus (Swartz) Beauv. In Vitro Cell.Dev.Biol.-Plant (2024). https://doi.org/10.1007/s11627-024-10432-1

    Download citation

    • Received:

    • Accepted:

    • Published:

    • DOI: https://doi.org/10.1007/s11627-024-10432-1

    Keywords

    Navigation