Log in

Development of transgenic rice pure lines with enhanced resistance to rice brown planthopper

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Mature seed-derived callus from an elite Chinese japonica rice cv. Ewan 5 was cotransformed with two plasmids, pWRG1515 and pRSSGNAl, containing the selectable marker hygromycin phosphotransferase gene (hpt), the reporter β-glucuronidase gene (gusA) and the snowdrop (Galanthus nivalis) lectin gene (gna) via particle bombardment. Thirty-five independent transgenic rice plants were regenerated from 177 bombarded calluses. Eighty-three percent of the transgenic plants contained all three genes, as revealed by Southern blot analysis. Western blot analysis revealed that 23 out of 29 gna-containing transgenic plants expressed Galanthus nivalis agglutinin (GNA) (79%) at various levels, with the highest expression being approximately 0.5% of total soluble protein. Genetic analysis confirmed Mendelian segregation of all three transgenes (gna, hpt and gusA) in the R2 progeny. Amongst the R2 generation two independent homozygous lines were identified that expressed all three transgenes. Insect bioassay and feeding tests showed that these homozygous lines had significant inhibition to rice brown planthopper (Nilaparvata lugens, BPH) by decreasing the survival, overall fecundity of BPH, retarding development, and decreasing the feeding of BPH. These BPH-resistant lines have been incorporated into a rice insect resistance breeding program. This is the first report that homozygous transgenic rice lines expressing GNA, developed by genetic transformation and through genetic analysis-based selection, conferred enhanced resistance to BPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burkhardt, P. K.; Beyer, P.; Wunn, J.; Kloti, A.; Armstrong, G. A.; Schledz, M.; von Lintig, J.; Potrykus, I.; Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J. 11:1071–1078; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L.; Zhang, S.; Beachy, R. N. Fauquet, C. M. A protocol for consistent, large-scale production of fertile transgenic rice plants. Plant Cell Rep. 18:25–31; 1998.

    Article  Google Scholar 

  • Cheng, X.; Sardana, R.; Kaplan, H.; Altosaar, I. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc. Natl Acad. Sci. USA 95:2767–2772; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Christou, P. Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Euphytica 85:13–27; 1995.

    Article  Google Scholar 

  • Christou, P.; Ford, T. L.; Kofron, M. Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric-discharge particle-acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9:957–962; 1991.

    Article  Google Scholar 

  • Christou, P.; Ford, T. L.; Kofron, M. The development of a varietyindependent gene-transfer method for rice. Trends Biotechnol. 10:239–246; 1992.

    Article  Google Scholar 

  • Cooley, J.; Ford, T.; Christou, P. Molecular and genetic characterization of elite transgenic rice plants produced by electric discharge particle acceleration. Theor. Appl. Genet. 90:97–104; 1995.

    Article  CAS  Google Scholar 

  • Edwards, K.; Johnstone, C.; Thompson, C. A simple and rapid method for the preparation of plant genomic DNA for PCR analyses. Nucl. Acids Res. 98:1349; 1991.

    Article  Google Scholar 

  • Goto, F.; Toki, S.; Uchimiya, H. Inheritance of a co-transferred foreign gene in the progenies of transgenic rice plants. Transgenic Res. 2:302–305; 1993.

    Article  Google Scholar 

  • Hadi, M. Z.; McMullen M. D.; Finer, J. J. Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep. 15:500–505; 1996.

    Article  CAS  Google Scholar 

  • Hiei, Y.; Ohta, S.; Komari, T.; Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6:271–282; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Ishida, Y.; Saito, H.; Ohta, S.; Hiei, Y.; Komari T.; Kumashiro, T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol. 14:745–750; 1996.

    Article  CAS  Google Scholar 

  • Jefferson, R. A.; Kavanagh, T. A.; Bevan, M. W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3907; 1987.

    PubMed  CAS  Google Scholar 

  • Kohli, A.; Leech, M.; Vain, P.; Laurie, D. A.; Christou, P. Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot-spots. Proc. Natl Acad. Sci. USA 95:7203–7207; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Maqbool, S. B.; Christou, P. Multiple traits of agronomic importance in transgenic indica rice plants: analysis of transgene integration patterns, expression levels and stability. Mol. Breed. 5:471–480; 1999.

    Article  Google Scholar 

  • Mochida, O.; Wahyu, A.; Surjani, T. K. Some considerations on screening resistant cultivars/lines of rice plant to the brown planthopper, Nilaparvata lugens (Stal) (Hom., Delphacidae). Los Banos, Philippines: IRRI; 1979: 1–9.

    Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Ou, S. M. Rice diseases, 2nd edn. UK: Commonwealth Agriculture Bureau, Commonwealth Mycological Institute; 1985: 360 pp.

    Google Scholar 

  • Powell, K. S.; Gatehouse, A. M. R.; Hilder, V. A.; Gatehouse, J. A. Antimetabolic effects of plant lectins and plant and fungal enzymes on the nymphal stages of two important rice pest. Nilaparvata lugens and Nephotettix cinciteps. Entomol. Exp. Appl. 66:119–126; 1993.

    Article  CAS  Google Scholar 

  • Powell, K. S.; Gatehouse, A. M. R.; Hilder, V. A.; Gatehouse, J. A. Antifeedant effects of plant lectins and enzymes on the adult stage of the rice brown planthopper, Nilaparvata lugens. Entomol. Exp. Appl. 75:51–59; 1995.

    Article  CAS  Google Scholar 

  • Pusztai, A.; Ewan, S. W. B.; Grant, G.; Peumans, W. J. The relationship between survival and binding of plant lectins during small intestinal passage and their effectiveness as growth factors. Digestion 46:308–316; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Rao, K. V.; Rathore, K. S.; Hodges, T. K.; Fu, X.; Stoger, E.; Sudhakar, D.; Williams, S.; Christou, P.; Bharathi, M.; Brown, D. P.; Powell, K. S.; Spence, J.; Gatehouse, A. M.; Gatehouse, J. A. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J. 15:469–477; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Schocher, R. J.; Shillito, R. D.; Saul, M. W.; Paszkowski, J.; Potrykus, I. Cotransformation of unlinked foreign genes into plants by direct gene transfer. Bio/Technology 4:1093–1096; 1986.

    Article  CAS  Google Scholar 

  • Shi, Y.; Wang, M. B.; Powell, K. S.; Van Damme, E.; Hilder, V. A.; Gatehouse, A. M. R.; Boulter, D.; Gatehouse, J. A. Use of the rice sucrose synthase-1 promoter to direct phloem-specific expression of β-glucuronidase and snowdrop lectin genes in transgenic tobacco plants. J. Exp. Bot. 45:623–631; 1994.

    Article  CAS  Google Scholar 

  • Sogawa, K.; Pathak, M. D. Mechanisms of brown planthopper resistance in the Mudgo variety of rice. Appl. Entomol. Zool. 5:145–158; 1970.

    Google Scholar 

  • Song, W. Y.; Wang, G. L.; Chen, L. L.; Kim, H. S.; Pi, L. Y.; Holsten, T.; Gardner, J.; Wang, B.; Zhai, W. X.; Zhu, L. H.; Fauquet, C.; Ronald, P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Sudhakar, D.; Fu, X.; Stoger, E.; Williams, S.; Spence, J.; Brown, D. P.; Bharathi, M.; Gatehouse, J. A.; Christou, P. Expression and immunolocalization of the snowdrop lectin insecticidal protein GNA, in transgenic rice plants. Transgenic Res. 7:371–378; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Tang, K., Tinjuangjun, P.; Xu, Y. Sun, X.; Gatehouse, J. A.; Ronald, P. C.: Qi, H.; Lu, X.; Christou, P.; Kohli, A.: Particle bombardmentmediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap sucking insect pests. Planta 208:552–563; 1999.

    Article  CAS  Google Scholar 

  • Wakita, Y.; Otani, M.; Iba, K.; Shimada, T. Co-integration, co-expression and co-segregation of an unlinked selectable marker gene and NtFAD3 gene in transgenic rice plants produced by particle bombardment. Genes Gen. Sys. 73:219–226; 1998.

    Article  CAS  Google Scholar 

  • Wang, M. B.; Boulter, D.; Gatehouse, J. A. A complete sequence of the rice sucrose synthase-1 (Rss1) gene. Plant Mol. Biol. 19:881–885; 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kexuan Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, K., Hu, Q., Sun, X. et al. Development of transgenic rice pure lines with enhanced resistance to rice brown planthopper. In Vitro Cell.Dev.Biol.-Plant 37, 334–340 (2001). https://doi.org/10.1007/s11627-001-0060-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-001-0060-8

Key words

Navigation