Log in

Vaginal irritation testing—prospects of human organotypic vaginal tissue culture models

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Personal lubricants intended for local or systemic delivery via the vaginal route can induce vaginal irritation, damage the vaginal epithelial barrier which can enhance microbial entry, induce inflammation, and alter the microbiome of the vaginal ecosystem. Therefore, manufacturers of personal lubricants and medical devices are required to show biocompatibility and safety assessment data to support regulatory decision-making within a specified context of use. Furthermore, due to ethical concerns and the introduction of the 7th amendment of the European Council Directive which bans animal testing for cosmetic ingredients and products coupled with the Food and Drug Administration modernization Act 2.0 guidelines, there is a wave of drive to develop alternative test methods to predict human responses to chemical or formulation exposure. In this framework, there is a potential to use three-dimensional organotypic human vaginal-ectocervical tissue models as a screening tool to predict the vaginal irritation potential of personal lubricants and medicaments. To be physiologically relevant, the in vitro tissue models need to be reconstructed using primary epithelial cells of the specific organ or tissue and produce organ-like structure and functionality that recapitulate the in vivo–like responses. Through the years, progress has been made and vaginal tissue models are manufactured under controlled conditions with a specified performance criterion, which leads to a high level of reproducibility and reliability. The utility of vaginal tissue models has been accelerated in the last 20 years with an expanded portfolio of applications ranging from toxicity, inflammation, infection to drug safety, and efficacy studies. This article provides an overview of the state of the art of diversified applications of reconstructed vaginal tissue models and highlights their utility as a tool to predict vaginal irritation potential of feminine care products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

References

  • Adriaens E, Remon JP (2008) Mucosal irritation potential of personal lubricants relates to product osmolality as detected by the slug mucosal irritation assay. Sex Transm Dis 35:512–516

    Article  CAS  PubMed  Google Scholar 

  • Agace WW, Amara A, Roberts AI, Pablos JL, Thelen S, Uguccioni M, Li XY, Marsal J, Arenzana-Seisdedos F, Delaunay T, Ebert EC, Moser B, Parker CM (2000) Constitutive expression of stromal derived factor-1 by mucosal epithelia and its role in HIV transmission and propagation. Curr Biol 23:325–328

    Article  Google Scholar 

  • Arnold KB, Burgener A, Birse K, Romas L, Dunphy LJ, Shahabi K, Abou M, Westmacott GR, McCorrister S, Kwatampora J, Nyanga B, Kimani J, Masson L, Liebenberg LJ, Abdool Karim SS, Passmore JA, Lauffenburger DA, Kaul R, McKinnon LR (2016) Increased levels of inflammatory cytokines in the female reproductive tract are associated with altered expression of proteases, mucosal barrier proteins, and an influx of HIV-susceptible target cells. Mucosal Immunol 9:194–205

    Article  CAS  PubMed  Google Scholar 

  • Ayehunie S, Cannon C, Lamore S, Kubilus J, Anderson DJ, Pudney J, Klausner M (2006) Organotypic human vaginal-ectocervical tissue model for irritation studies of spermicides, microbicides, and personal care products. Toxicol 20:689–698

    CAS  Google Scholar 

  • Ayehunie S, Cannon C, Larosa K, Pudney J, Anderson DJ, Klausner M (2011) Development of an in vitro alternative assay method for vaginal irritation. Toxicology 279:130–138

    Article  CAS  PubMed  Google Scholar 

  • Ayehunie S, Islam A, Cannon C, Landry T, Pudney J, Klausner M, Anderson DJ (2015) Characterization of a hormone-responsive organotypic human vaginal tissue model: morphologic and immunologic effects. Reprod Sci 22:980–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayehunie S, Wang YY, Landry T, Bogojevic S, Cone RA (2017) Hyperosmolal vaginal lubricants markedly reduce epithelial barrier properties in a three-dimensional vaginal epithelium model. Toxicol Rep 16:134–140

    Google Scholar 

  • Bakus C, Budge KL, Feigenblum N, Figueroa M, Francis AP (2023) The impact of contraceptives on the vaginal microbiome in the non-pregnant state. Front Microbiomes 1:1–9

    Article  Google Scholar 

  • Baldeon-Vaca G, Marathe JG, Politch JA, Mausser E, Pudney J, Doud J, Nador E, Zeitlin L, Pauly M, Moench TR, Brennan M, Whaley KJ, Anderson DJ (2021) Production and characterization of a human antisperm monoclonal antibody against CD52g for topical contraception in women. EBioMedicine 69:103478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bélec L, Meillet D, Lévy M, Georges A, Tévi-Bénissan C, Pillot J (1995) Dilution assessment of cervicovaginal secretions obtained by vaginal washing for immunological assays. Clin Diagn Lab Immunol 2:57–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Benson K, Cramer S, Galla HJ (2013) Impedance-based cell monitoring: barrier properties and beyond. Fluids Barriers CNS 10:1–11

    Article  Google Scholar 

  • Benziger DP, Edelson J (1983) Absorption from the vagina. Drug Metab Rev 14:137–168

    Article  CAS  PubMed  Google Scholar 

  • Catalone BJ, Kish-Catalone TM, Budgeon LR, Neely EB, Ferguson M, Krebs FC, Howett MK, Labib M, Rando R, Wigdahl B (2004) Mouse model of cervicovaginal toxicity and inflammation for preclinical evaluation of topical vaginal microbicides. Antimicrob Agents Chemother 48:1837–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark MR, McCormick TJ, Doncel GF, Friend DR (2011) Preclinical evaluation of UC781 microbicide vaginal drug delivery. Drug Deliv Transl Res 1:175–182

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (2008) AIDS research. Microbicide fails to protect against HIV. Science 319:1026–1027

    Article  CAS  PubMed  Google Scholar 

  • Cone R, Hoen T, Wong X, Abusuwwa R, Anderson D, Moench TR (2006) Vaginal microbicides: detecting toxicities in vivo that paradoxically increase pathogen transmission. BMC Infect Dis 6:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Costin GE, Hill E, Brown J, Clip**er AJ (2020) Qualification of a non-animal vaginal irritation method admitted as nonclinical assessment model (NAM) in the Incubator Phase of the United States Food and Drug Administration (US FDA) Medical Devices Development Tool (MDDT). Toxicol in Vitro 62:104680

    Article  PubMed  Google Scholar 

  • Costin GE, Raabe HA, Priston R, Evans E, Curren RD (2011) Vaginal irritation models: The current status of available alternative and in vitro tests. ATLA Altern to Lab Anim 39:317–337

    Article  CAS  Google Scholar 

  • D’cruz OJ, Erbeck D, Uckun FM (2005) A study of the potential of the pig as a model for the vaginal irritancy of benzalkonium chloride in comparison to the nonirritant microbicide PHI-443 and the spermicide vanadocene dithiocarbamate. Toxicol Pathol 33:465–476

    Article  PubMed  Google Scholar 

  • Dayal MB, Wheeler J, Williams CJ, Barnhart KT (2003) Disruption of the upper female reproductive tract epithelium by nonoxynol-9. Contraception 68:273–279

    Article  CAS  PubMed  Google Scholar 

  • Dhondt MM, Adriaens E, Remon JP (2004) The evaluation of the local tolerance of vaginal formulations, with or without nonoxynol-9, using the slug mucosal irritation test. Sex Transm Dis 31:229–235

    Article  CAS  PubMed  Google Scholar 

  • Fatakdawala H, Uhland SA (2011) Hydrogen peroxide mediated transvaginal drug delivery. Int J Pharm 409:121–127

    Article  CAS  PubMed  Google Scholar 

  • FDA (2023) Qualification of medical device development tools; Guidance for industry, tool developers, and food and drug administration staff. Document issued on July 17 by U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health

  • Fichorova RN, Anderson DJ (1999) Differential expression of immunobiological mediators by immortalized human cervical and vaginal epithelial cells. Biol Reprod 60:508–514

    Article  CAS  PubMed  Google Scholar 

  • Fichorova RN, Tucker LD, Anderson DJ (2001) The molecular basis of nonoxynol-9-induced vaginal inflammation and its possible relevance to human immunodeficiency virus type 1 transmission. J Infect Dis 184:418–428

  • Fink CG, Thomas GH, Allen JM, Jordan JA (1973) Metaplasia in endocervical tissue maintained in organ culture–an experimental model. J Obstet Gynaecol Br Commonw 80:169–175

    Article  CAS  PubMed  Google Scholar 

  • Fuchs EJ, Lee LA, Torbenson MS, Parsons TL, Bakshi RP, Guidos AM, Wahl RL, Hendrix CW (2007) Hyperosmolar sexual lubricant causes epithelial damage in the distal colon: potential implication for HIV transmission. J Infect Dis 195:703–710

    Article  PubMed  Google Scholar 

  • Galen BT, Martin AP, Hazrati E, Garin A, Guzman E, Wilson SS, Porter DD, Lira SA, Keller MJ, Herold BC (2007) A comprehensive murine model to evaluate topical vaginal microbicides: mucosal inflammation and susceptibility to genital herpes as surrogate markers of safety. J Infect Dis 195:1332–1339

    Article  CAS  PubMed  Google Scholar 

  • Golińska E, Sowińska N, Tomusiak-Plebanek A, Szydło M, Witka N, Lenarczyk J, Strus M (2021) The vaginal microflora changes in various stages of the estrous cycle of healthy female dogs and the ones with genital tract infections. BMC Vet Res 17:1–8

    Article  Google Scholar 

  • Grant-Tschudy KS, Wira CR (2004) Effect of estradiol on mouse uterine epithelial cell transepithelial resistance (TER). Am J Reprod Immunol 52:252–262

    Article  PubMed  Google Scholar 

  • Hearps A, Tyssen D, Srbinovski D, Bayigga L, Diaz DJD, Aldunate M, Cone RA, Gugasyan R, Anderson DJ, Tachedjian G (2017) Vaginal lactic acid elicits an anti-inflammatory response from human cervicovaginal epithelial cells and inhibits production of pro-inflammatory mediators associated with HIV acquisition. Mucosal Immunol 10:1480–1490

    Article  CAS  PubMed  Google Scholar 

  • Hjelm BE, Berta AN, Nickerson CA, Arntzen CJ, Herbst-Kralovetz MM (2010) Development and characterization of a three-dimensional organotypic human vaginal epithelial cell model. Biol Reprod 82:617–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imagawa W, Pedchenko VK, Helber J, Zhang H (2002) Hormone/growth factor interactions mediating epithelial/stromal communication in mammary gland development and carcinogenesis. J Steroid Biochem Mol Biol 80:213–230

    Article  CAS  PubMed  Google Scholar 

  • Ishii A, Ogawa B, Koyama T, Nakanishi Y, Sasaki M (2017) Influence of the estrus cycle on the evaluation of a vaginal irritation study in intact and ovariectomized rats. J Toxicol Pathol 30:161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iversen AK et al (1998) Cervical human immunodeficiency virus type 1 shedding is associated with genital beta-chemokine secretion. J Infect Dis 178:1334–1342

  • Kang M, Long T, Chang C, Meng T, Ma H, Li Z, Li P, Chen Y (2022) A review of the ethical use of animals in functional experimental research in China based on the “Four R” Principles of reduction, replacement, refinement, and responsibility. Med Sci Monit 28:e938807

    PubMed  PubMed Central  Google Scholar 

  • Kaur M, Gupta KM, Poursaid AE, Karra P, Mahalingam A, Aliyar HA, Kiser PF (2011) Engineering a degradable polyurethane intravaginal ring for sustained delivery of dapivirine. Drug Deliv Transl Res 1:223–237

    Article  CAS  PubMed  Google Scholar 

  • Klausner M, Hayden PJ, Breyfogle BA, Bellavance KL, Osborn MM, Cerven DR, DeGeorge GL, Kubilus J (2003) The EpiOcular prediction model: a reproducible in vitro means of assessing ocular irritancy. In: Katz SA, Salem H (eds) Alternative Toxicological Methods. CRC Press, Boca Raton, FL, pp 131–146

    Google Scholar 

  • Kletzky OA, Vermesh M (1989) Effectiveness of vaginal bromocriptine in treating women with hyperprolactinemia. Fertil Steril 5:269–272

    Article  Google Scholar 

  • Łaniewski P, Owen KA, Khnanisho M, Brotman RM, Herbst-Kralovetz MM (2021) Clinical and personal lubricants impact the growth of vaginal Lactobacillus species and colonization of vaginal epithelial cells: an in vitro study. Sex Transm Dis 48:63–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Herrera GG, Tam KK, Lizarraga JS, Beedle MT, Winuthayanon W (2018) Estrogen action in the epithelial cells of the mouse vagina regulates neutrophil infiltration and vaginal tissue integrity. Sci Rep 26:11247

  • Liebsch M, Traue D, Barrabas C, Spielmann H, Uphill P, Wilkins S, McPherson J, Wiemann C, Kaufmann T, Remmele M, Holzhütter H-G, Brantom P, Aspin P, Southee JA (2000) Prevalidation of the EpiDermTM skin corrosivity test. ATLA 28:371–401

    CAS  PubMed  Google Scholar 

  • Machado RM, Palmeira-de-Oliveira A, Gaspar C, Martinez-de-Oliveira J, Palmeira-de-Oliveira R (2015) Studies and methodologies on vaginal drug permeation. Adv Drug Deliv Rev 92:14–26

    Article  CAS  PubMed  Google Scholar 

  • Mahajan G, Doherty E, To T, Sutherland A, Grant J, Junaid A, Gulati A, LoGrande N, Izadifar Z, Timilsina SS, Horváth V, Plebani R, France M, Hood-Pishchany I, Rakoff-Nahoum S, Kwon DS, Goyal G, Prantil-Baun R, Ravel J, Ingber DE (2022) Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip. Microbiome 10:201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCracken JM, Calderon GA, Robinson AJ, Sullivan CN, Cosgriff-Hernandez E, Hakim JCE (2021) Animal models and alternatives in vaginal research: a comparative review. Reprod Sci 28:1759–1773

    Article  PubMed  Google Scholar 

  • Merbah M, Introini A, Fitzgerald W, Grivel JC, Lisco A, Vanpouille C, Margolis L (2011) Cervico-vaginal tissue ex vivo as a model to study early events in HIV-1 infection. Am J Reprod Immunol 65:268–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyagawa S, Iguchi T (2015) Epithelial estrogen receptor 1 intrinsically mediates squamous differentiation in the mouse vagina. Proc Natl Acad Sci U S A 112:12986–12991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 65:55

    Article  CAS  Google Scholar 

  • Moudagal C, Strazdas L, Sheehan D, Wolfinger D, Costin G, Ayehunie S, Armento A (2019) In vitro safety profile of personal care products – use of an in vitro testing platform based on reconstructed vaginal tissue model (SOT 2019, Poster, manuscript in preparation)

  • Noguchi K, Tsukumi K, Urano T (2003) Qualitative and quantitative differences in normal vaginal flora of conventionally reared mice, rats, hamsters, rabbits, and dogs. Comp Med 53:404–412

    CAS  PubMed  Google Scholar 

  • Park DW, Jo HT, Lee I-H, Park C-W, Seo JT (2019) The effects of vaginal lubricants on the human vagina: an in vitro analysis. Clin Exp Obstet Gynecol 46:427–433

    Article  Google Scholar 

  • Phillips DM, Taylor CL, Zacharopoulos VR, Maguire RA (2000) Nonoxynol-9 causes rapid exfoliation of sheets of rectal epithelium. Contraception 62:149–154

  • Pivarcsi A, Nagy I, Koreck A, Kis K, Kenderessy-Szabo A, Szell M, Dobozy A, Kemeny L (2005) Microbial compounds induce the expression of pro-inflammatory cytokines, chemokines and human β-defensin-2 in vaginal epithelial cells. Microbes Infect 7:1117–1127

    Article  CAS  PubMed  Google Scholar 

  • Qureshi SA, Buttar HS (1989) A comparative study of the pharmacokinetics of propranolol and its major metabolites in the rat after oral and vaginal administration. Xenobiotica 19:883–890

    Article  CAS  PubMed  Google Scholar 

  • Radtke AL, Herbst-Kralovetz MM (2012) Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models. J Vis Exp 62:3868

    Google Scholar 

  • Roddy RE, Cordero M, Cordero C, Fortney JA (1993) A dosing study of nonoxynol-9 and genital irritation. Int J STD AIDS 4:165–170

    Article  CAS  PubMed  Google Scholar 

  • Roso A, Puginier M, Bergal M, Nunzi F, Alonso A (2021) In vitro approach to assess local tolerance of ingredients dedicated to specific topical care applications. J Dermatol Skin Sci 3:30–48

    Google Scholar 

  • Schall TJ, Bacon K, Camp RD, Kaspari JW, Goeddel DV (1993) Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. J Exp Med 177:1821–1826

    Article  CAS  PubMed  Google Scholar 

  • Schaller M, Bein M, Korting HC, Baur S, Hamm G, Monod M, Beinhauer S, Hube B (2003) The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun 71:3227–3234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaller M, Korting HC, Borelli C, Hamm G, Hube B (2005) Candida albicans-secreted aspartic proteinases modify the epithelial cytokine response in an in vitro model of vaginal candidiasis. Infect Immun 73:2758–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaller M, Zakikhany K, Naglik JR, Weindl G, Hube B (2006) Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia. Nat Protoc 1:2767–2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seok J, Warren HS, Cuenca AG et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110:3507–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafaat S, Mangir N, Chapple C, MacNeil S, Hearnden V (2022) A physiologically relevant, estradiol-17β [E2]-responsive in vitro tissue-engineered model of the vaginal epithelium for vaginal tissue research. Neurourol Urodyn 41:905–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobel JD, Tchao R, Bozzola J, Levison ME, Kaye D (1979) Human vaginal epithelial multilayer tissue culture. In Vitro 15:993–1000

    Article  CAS  PubMed  Google Scholar 

  • Squier CA, Mantz MJ, Schlievert PM, Davis CC (2008) Porcine vagina ex vivo as a model for studying permeability and pathogenesis in mucosa. J Pharm Sci 97:9–21

    Article  CAS  PubMed  Google Scholar 

  • Stafford MK, Ward H, Flanagan A, Rosenstein IJ (1998) Taylor-Robinson D, Smith JR, Weber J, Kitchen VS. Safety study of nonoxynol-9 as a vaginal microbicide: evidence of adverse effects. J Acquir Immune Defic Syndr Hum Retrovirol 17:327–331

    Article  CAS  PubMed  Google Scholar 

  • Tachedjian G, Muriel Aldunate M, Bradshaw CS, Cone RA (2017) The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res Microbiol 168:782–792

    Article  CAS  PubMed  Google Scholar 

  • Taub DD, Conlon K, Lloyd AR, Oppenheim JJ, Kelvin DJ (1993) Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1α and MIP-1β. Science 260:355–358

    Article  CAS  PubMed  Google Scholar 

  • Tyssen D, Hearps AC, Guntur K, Masson L, Cook S, Moulton SE, Ravel J, Bradshaw CS, Ayehunie S, Tachedjian G (2022) The impact of over-the-counter lactic acid containing vaginal gels on the integrity and inflammatory state of the vaginal epithelium in vitro. Front Reprod Health 4:915948

    Article  PubMed  PubMed Central  Google Scholar 

  • Vermani K, Garg S (2000) The scope and potential of vaginal drug delivery. PSTT 3:359–364

    CAS  Google Scholar 

  • Vinayak S, Alonso A, Bertino B, Costin GE, de Brugerolle de Fraissinette A, Orak D, Inglis H, Kazmi P, Raabe H, Re T (2010) Integrated in vitro vaginal safety screening approach for bath and body wash products utilizing SkinEthic human vaginal epithelium. SOT

  • Wilkinson D, Ramjee G, Tholandi M, Rutherford GW (2002) Nonoxynol-9 for preventing vaginal acquisition of HIV infection by women from men. Cochrane Database Syst Rev 3. Art. No.: CD003936

  • Zaneveld LJ, Waller DP, Ahmad N, Quigg J, Kaminski J, Nikurs A, De Jonge C (2001) Properties of a new, long-lasting vaginal delivery system (LASRS) for contraceptive and antimicrobial agents. J Androl 22:481–490

    Article  CAS  PubMed  Google Scholar 

  • Zaneveld LJ, Waller DP, Anderson RA, Chany C 2nd, Rencher WF, Feathergill K, Diao XH, Doncel GF, Herold B, Cooper M (2002) Efficacy and safety of a new vaginal contraceptive antimicrobial formulation containing high molecular weight poly (sodium 4-styrenesulfonate). Biol Reprod 66:886–894

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge and thank Alain Alonso for sharing the images for the SkinEthic human vaginal epithelium (HVE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyoum Ayehunie.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayehunie, S., Landry, T. & Armento, A. Vaginal irritation testing—prospects of human organotypic vaginal tissue culture models. In Vitro Cell.Dev.Biol.-Animal (2024). https://doi.org/10.1007/s11626-024-00907-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11626-024-00907-1

Keywords

Navigation