Log in

Integrated core-log interpretation of Wenchuan earthquake Fault Scientific Drilling project borehole 4 (WFSD-4)

  • Research Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Understanding slip behavior of active fault is a fundamental problem in earthquake investigations. Well logs and cores data provide direct information of physical properties of the fault zones at depth. The geological exploration of the Wenchuan earthquake Scientific Fault drilling project (WFSD) targeted the Yingxiu-Beichuan fault and the Guanxian Anxian fault, respectively. Five boreholes (WFSD-1, WFSD-2, WFSD-3P WFSD-3 and WFSD-4) were drilled and logged with geophysical tools developed for the use in petroleum industry. WFSD-1, WFSD-2 and WFSD-3 in situ logging data have been reported and investigated by geoscientists. Here we present for the first time, the integrated core-log studies in the Northern segment of Yingxiu-Beichuan fault (WFSD-4) thereby characterizing the physical properties of the lithologies(original rocks), fault rocks and the presumed slip zone associated with the Wenchuan earthquake. We also present results from the comparison of WFSD-4 to those obtained from WFSD-1, WFSD-3 and other drilling hole in active faults. This study show that integrated core-log study would help in understanding the slip behavior of active fault.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aguilera Roberto (1980) Naturally fractured reservoirs. Petroleum Publishing, Tulsa, p 703

    Google Scholar 

  • Barth NC, Boulton CJ, Carpenter BM, Batt GE, Toy VG (2013) Slip localization on the Southern Alpine Fault, New Zealand. Tectonics 32:620–640. doi:10.1002/tect.20041

    Article  Google Scholar 

  • Boness N, Zoback MD (2006) A multi-scale study of the mechanisms controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth. Geophysics 7(5):F131–F146. doi:10.1190/1.2231107

    Article  Google Scholar 

  • Boulton C, Moore DE, Lockner DA, Toy VG, Townend J, Sutherland R (2014) Frictional properties of exhumed fault gouges in DFDP-1cores, Alpine Fault, New Zealand. Geophys Res Lett 41:356–362

    Article  Google Scholar 

  • Boyd A, Davis B, Flaum C (1995) The lowdown on low-resistivity pay. Oilfield Rev 7(3):4–18 (Schlumberger)

    Google Scholar 

  • Bradbury KK, Davis CR, Shervais JW (2015) Composition, alteration, and texture of fault-related rocks from Safod core and surface outcrop analogs: evidence for deformation processes and fluid-rock interactions. Pure Appl Geophys 172:1053. doi:10.1007/s00024-014-0896-6

    Article  Google Scholar 

  • Bucker C, Rybach L (1996) A simple method to determine heat production from gamma logs. Mar Petrol Geol 13:373–375

    Article  Google Scholar 

  • Chester FM, Mori JJ, Toczko S (2012) Integrated ocean drilling program expedition 343/343T preliminary report, Japan Trench Fast Drilling Project (JFAST), 1 April–24 May 2012 and 5–19 July 2012. IODP. doi:10.2204/iodp.pr.343343T.2012

  • Cornet FH, Bernard P, Moretti I (2004) The corinth rift laboratory. Comptes Rendus Geosci 336:235241

    Google Scholar 

  • Daniels JJ, Olhoeft GR, Scott JH (1984) Interpretation of core and well log physical property data from drill hole UPH-3, Stephenson County, Illinois. U.S. Geological Survey. Open-File Report 82-941

  • Davis GH, Reynolds SJ (1996) Structural geology of rocks and regions, 2nd edn. Wiley, New Jersey

    Google Scholar 

  • Duan Q, Yang X, Ma S, Chen J, Chen J (2015) Fluid-rock interactions in seismic faults: implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake, China. Tectonophysics 666:260–280

    Article  Google Scholar 

  • Euzen T, Delamaide E, Feuchtwanger T, Kingsmith KD (2010) Well log cluster analysis: an innovative tool for unconventional exploration. In: CSUG/SPE 137822, Canadian unconventional resources and international petroleum conference, Calgary, 19–21 October 2010

  • Forster A, Hotzl H, Rettenmaier D, Cornet F, Borm G (2004) The ICDPDG Lab AIGION Fault Drilling Gulf of Corinth/Greece: a thermohydraulic approach to seismicity and geodynamics. Abstract at ICDP Conference “continental scientific drilling 2005: a decade of progress and challenges for the future” Potsdam. http://www.icdponline.de/news/future_abstracts.html

  • Georgi DT, Bergren PA, Devier CA (1997) Plug gamma ray: key to formation evaluation. In: Poster presentation at the 1997 SCA International Symposium, Calgary, 8–10 September. SCA-9732

  • Harms U, Tobin HJ (2011) Deep scientific drilling. In: Gupta HK (ed) Encyclopedia of solid earth. Springer Science + Business Media B.V, Dordrecht

  • Harvey PK, Brewer TS, Pezard PA, Petrov VA (eds) (2005) Petrophysical properties of crystalline rocks. The Geological Society, London. ISBN: 1862391734 9781862391734

  • Hirono T, Fujimoto K, Yokoyama T (2008) Clay mineral reactions caused by frictional heating during an earthquake: an example from the Taiwan Chelungpu fault. Geophys Res Lett. doi:10.1029/2008GL034476

    Google Scholar 

  • Hung J, Wu Y, Yeh E, Wu J (2007) Subsurface structure, physical properties, and fault zone characteristics in the scientific drill holes of Taiwan Chelungpu-fault drilling project. Terr Atmos Ocean Sci 18(2):271–293

    Article  Google Scholar 

  • Hung J, Ma K, Wang C, Ito H (2009) Subsurface structure, physical properties, fault zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu Fault Drilling Project. Tectonophysics 466:307–321

    Article  Google Scholar 

  • Hurst A (1990) Natural gamma-ray spectrometry in hydrocarbon-bearing sandstones from the Norwegian Continental Shelf. In: Hurst A, Lovell MA, Morton AC (eds) Geological application of wireline logs. Geological Society of London Special Publication No. 48, pp 211–222

  • Isaacs AJ, Evans JP, Kolesar PT, Nohara T (2008) Composition, microstructures, and petrophysics of the Mozumi fault, Japan: in situ analyses of fault zone properties and structure in sedimentary rocks from shallow crustal levels. J Geophys Res 113:B12408. doi:10.1029/2007JB005314

    Article  Google Scholar 

  • Jeppson TN, Bradbury KK, Evans JP (2010) Geophysical properties within the San Andreas Fault Zone at the San Andreas Fault Observatory at Depth and their relationships to rock properties and fault zone structure. J Geophys Res 115:B12423. doi:10.1029/2010JB007563

    Article  Google Scholar 

  • Jones AG, Garcia X (2006) Electrical resistivity structure of the Yellowknife River Fault zone and surrounding region. In: Gold in the Yellowknife Greenstone Belt, Northwest Territories: results of the EXTECH III Multidisciplinary Research Project. Geological Association of Canada, Mineral Deposits Division, Special Publication No. 3, Chapter: 10

  • Keys WS (1979) Borehole geophysics in igneous and metamorphic rocks. In: Transactions of the annual logging symposium, 20th 1979, Tulsa. Society of Professional Well Log Analysts, Houston, pp OO1–OO26

  • Kinoshita M, Gaku Kimura G, Saito S (2014) Seismogenic processes revealed through the Nankai trough seismogenic zone experiments: core, log, geophysics, and observatory measurements. Dev Mar Geol 7:641–670

    Article  Google Scholar 

  • Kuo LW, Song SR, Yeh EC, Chen HF (2009) Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications. Geophys Res Lett 36:L18306. doi:10.1029/2009GL039269

    Article  Google Scholar 

  • Kuo LW, Song SR, Huang L, Yeh EC, Chen HF (2011) Temperature estimates of coseismic heating in clay-rich fault gouges, the Chelungpu fault zones, Taiwan. Tectonophysics 502(3–4):315–327

    Article  Google Scholar 

  • Lay T (2009) Seismological grand challenges in understanding earth’s dynamic systems. Report to the National Science Foundation, IRIS Consortium

    Google Scholar 

  • Li H, Wang H, Xu Z, Si J, Pei J (2013) Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics 584:23–42

    Article  Google Scholar 

  • Li H, Xu Z, Niu Y, Kong G, Yao H (2014) Structural and physical property characterization in the Wenchuan earthquake Fault Scientific Drilling project—hole 1 (WFSD-1). Tectonophysics 619–620:86–100

    Article  Google Scholar 

  • Li H, Wang H, Xu Z, Li T, Si J, Sun Z (2015) Lithological and structural characterization of the Longmen Shan fault belt from the 3rd hole of the Wenchuan Earthquake Fault Scientific Drilling project (WFSD-3). Int J Earth Sci. doi:10.1007/s00531-015-1285-9

    Google Scholar 

  • Liu DL, Li HB, Lee TQ, Chou YM, Song SR, Sun ZM, Chevalier ML, Si JL (2014) Primary rock magnetism for the Wenchuan earthquake fault zone at Jiulong outcrop, Sichuan Province, China. Tectonophysics 2014(619–620):58–69

    Article  Google Scholar 

  • Lockner DA, Morrow CA, Moore DE, Hickman SH (2011) Low strength of deep San Andreas Fault gouge from SAFOD core. Nature 472:82–85. doi:10.1038/nature09927

    Article  Google Scholar 

  • Ma KF, Tanaka H, Song SR, Wang C-Y, Hung JH, Tsai YB (2006) Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature 444:473–476. doi:10.1038/nature05253

    Article  Google Scholar 

  • McRoberts CA, Furrer H, Jones DS (1997) Palaeoenvironmental interpretation of a Triassic-Jurassic boundary section from Western Austria based on palaeoecological and geochemical data. Palaeogeogr Palaeoclimatol Palaeoecol 136:79–95

    Article  Google Scholar 

  • Morrow C, Lockner DA, Hickman S (2015) Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD. J Geophys Res Solid Earth 120:8240–8258. doi:10.1002/2015JB012214

    Article  Google Scholar 

  • Myers KJ, Wignall PB (1987) Understanding Jurassic organic-rich mudrocks: new concepts using gamma-ray spectrometry and palaeoecology: examples from the Kimmeridge Clay of Dorset and the Jet Rock of Yorkshire. In: Leggett JK, Zuffa GG (eds) Marine clastic sedimentology: concepts and case studies. Graham & Trotman, London, pp 172–189

  • Nie X, Changchun Zou C, Pan L, Huang Z, Dongming Liu D (2013) Fracture analysis and determination of in situ stress direction from resistivity and acoustic image logs and core data in the Wenchuan Earthquake Fault Scientific Drilling Borehole-2 (50–1370 m). Tectonophysics 593(8):161–171

    Article  Google Scholar 

  • Ogasawara H, Yanagidani T, Ando M (eds) (2002) Seismic process monitoring. In: Proceeding of a Joint Japan-Poland symposium on mining and experimental seismology, Kyoto. Balkema, p 414

  • Ohtani T, Tanaka H, Fujimoto K, Higuchi T, Tomida N, Ito H (2001) Internal structure of the Nojima fault zone from the Hirabayashi GSJ drill core.The. Island Arc 10:392–400

    Article  Google Scholar 

  • Pezard, P., Ito, H., Hermitte, D., and Revil, A., 2000, Electrical properties and alteration of granodiorites from the GSJ Hirabayashi hole, Japan, in International Workshop of the Nojima Fault Core and Borehole Data Analysis, GSJ INTErim Rep. EQ/00/1 and USGS Open-File Rep. 000–129, edited by H. Ito et al., pp. 255–262, Geological Survey of Japan, Tskuba, Japan

  • Reches Z, Ito H (2007) Scientific drilling of active faults: past and future. In: Harms U, Koeberl C, Zoback MD (eds) Continental scientific drilling: a decade of progress and challenges for the future. Springer, Heidelberg. doi:10.1007/978-3-540-68778-8_6

  • Rice JR, Cocco M (2007) Seismic fault rheology and earthquake dynamics. In: Handy MR, Hirth G, Hovious N (eds) The dynamic of fault zones. MIT Press, Cambridge, pp 99–137

    Google Scholar 

  • Schleichera AM, Sutherland R, Townend J, Toy VG, van der Pluijm BA (2015) Clay mineral formation and fabric development in the DFDP-1B borehole, central Alpine Fault, New Zealand. N Z J Geol Geophys. doi:10.1080/00288306.2014.979841

    Google Scholar 

  • Serra O (1984) Fundamentals of well-log interpretation, vol 1. Elsevier, Amsterdam

    Google Scholar 

  • Serra O, Abbott HT (1982) The contribution of logging data. West FG, Laughlin AW, 1976. Spectral gamma logging into sedimentology and stratigraphy. Soc. Pet. Eng. AIME, Spec. crystalline basement rocks. Geology 4:617–618:117–131

  • Sibson RH (1977) Fault rock sand fault mechanisms. Geol Soc Lond J 133:191–231

    Article  Google Scholar 

  • Solum JG, Pluijm BA (2004) Phyllosilicate mineral assemblages of the SOFAD pilot hole and comparison with an exhumed segment of the San Andreas Fault system. Geophys Res Lett 31:L15S19. doi:10.1029/2004GL019909

  • Song SR, Kuo LW, Yeh EC, Wang CY, Hung JH, Ma KF (2007) Characteristics of the lithology, fault-related rocks and fault zone structures in the TCDP Hole-A. Terr Atmos Ocean Sci 18:243–269

    Article  Google Scholar 

  • Storti F, Balsamo F, Salvini F (2007) Particle shape evolution in natural carbonate granular wear material. Terra Nova 19:344–352

    Article  Google Scholar 

  • Tanaka H, Wang CY, Chen WM, Sakaguchi A, Ujiie K, Ito H, Ando M (2002) Initial science report of shallow drilling penetrating into the Chelungpu fault zone, Taiwan. Terr Atmos Ocean Sci 13:227–251

    Article  Google Scholar 

  • Tanikawa W, Mishima T, Hirono T, Soh W, Song SR (2008) High magnetic susceptibility produced by thermal decomposition of core samples from the Chelungpu fault in Taiwan. Earth Planet Sci Lett 272(1–2):372–381

    Article  Google Scholar 

  • Tobin H, Kinoshita M (2006) NanTroSEIZE: the IODP Nankai Trough seismogenic zone experiment. Sci Drill 2:23–27. doi:10.2204/iodp.sd.2.06.2006

    Article  Google Scholar 

  • Tobin H, Vannuchi P, Meschede M (2001) Structure, inferred mechanical properties, and implications for fluid transport in the decollement zone, Costa Rica convergent margin. Geology 29:907–910

    Article  Google Scholar 

  • UNICEF (2009) Sichuan earthquake one year report. http://www.unicef.org/french/infobycountry/files/China_Earthquake_Report_2009ENG_Part_1.pdf

  • Wang H, Li HB, Si JL (2014) Internal structure of the Wenchuan earthquake fault zone, revealed by surface outcrop and WFSD-1 drilling core investigation. Tectonophysics 619–620:101–114

    Article  Google Scholar 

  • Wannamaker P, Jiracek G, Stodt J, Caldwell T, Gonzales V, McKnight J (2002) Fluid generation and pathways beneath an active compressional orogeny. The New Zealand Alps, inferred from magnetotelluric data. J Geophys Res 107(B6):2117. doi:10.1029/2001JB000186

    Article  Google Scholar 

  • Wood GH, Kehn TM, Carter DM, Culbertson WC (2015) Coal Resource Classification System of the U.S. Geological Survey 2015. Geological survey circular 891. http://pubs.usgs.gov/circ/c891/geophysical.htm

  • Wu FT, Blatter L, Roberson H (1975) Clay gouges in the San Andreas fault system and their possible implications. Pure Appl Geophys 113:87–95

    Article  Google Scholar 

  • Wu FT, Roberson H, Wang C, Mao NH (1979) Fault zones, gouge and mechanical properties of clays under high pressure. In: Proceedings of Conference VIII—analysis of Actual Fault Zones in Bedrock. U.S. Geological Survey Open-File Report 79-1239

  • Wu YH, Yeh EC, Dong JJ, Li-Wei Kuo LW, Hsu JY, Hung JH (2008) Core-log integration studies in hole—a of Taiwan Chelungpu-fault. Geophys J Int 174:949–965. doi:10.1111/j.1365-246X.2008.03841.x

    Article  Google Scholar 

  • Yamada JJ, Mori S, Ide H, Kawakata Y, Iio H, Ogasawara H (2005) Radiation efficiency and apparent stress of small earthquake in a South African gold mine. J Geophys Res 101:B06301

    Google Scholar 

  • Yamaguchi S, Murakami T, Inokuchi H (2001) Resistivity map** using the VLF-MT method around surface fault ruptures on the 1995 Hyogo-ken Nabu earthquake,Japan. Island Arc 10:296–305

    Article  Google Scholar 

  • Yang C-H, Cheng PH, You JI, Tsai L (2002) Significant resistivity changes in the fault zone associated with the 1999 Chi-Chi earthquake, west-central Taiwan. Tectonophysics 350:299–313

    Article  Google Scholar 

  • Yang T, Chen JY, Wang HQ, ** HQ (2012) Rock magnetic properties of fault rocks from the rupture of the 2008 Wenchuan Earthquake, China and their implications: preliminary results from the Zhaojiagou outcrop, Beichuan County (Sichuan). Tectonophysics 2012(530–531):331–341

    Article  Google Scholar 

  • Yong C, Booth DC (2011) The Wenchuan Earthquake of 2008: anatomy of a Disaster. Bei**g Science Press Published by Springer Verlag, Bei**g. ISBN 978-3-642-21159-1

    Google Scholar 

  • Zheng Y, Li H, Gong Z (2016) Geothermal study at the Wenchuan earthquake Fault Scientific Drilling project-hole 1 (WFSD-1): borehole temperature, thermal conductivity, and well log data. J Asian Earth Sci 117:23–32

    Article  Google Scholar 

  • Zoback M, Hickman S, Ellsworth W (2011) Scientific drilling into the San Andreas Fault zone—an overview of SAFOD’s first five years. Sci Drill. doi:10.2204/iodp.sd.11.02.2011

    Google Scholar 

Download references

Acknowledgements

We thank the Wenchuan Earthquake Fault Scientific Drilling Project of China for providing data Anonymous reviewers are thanked for helpful comments that resulted in an improved presentation of the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Amara Konaté or He** Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konaté, A.A., Pan, H., Ma, H. et al. Integrated core-log interpretation of Wenchuan earthquake Fault Scientific Drilling project borehole 4 (WFSD-4). Acta Geophys. 65, 683–700 (2017). https://doi.org/10.1007/s11600-017-0059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-017-0059-0

Keywords

Navigation