Log in

LRP6 Bidirectionally Regulates Insulin Sensitivity through Insulin Receptor and S6K Signaling in Rats with CG-IUGR

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

Intrauterine growth restriction followed by postnatal catch-up growth (CG-IUGR) increases the risk of insulin resistance-related diseases. Low-density lipoprotein receptor-related protein 6 (LRP6) plays a substantial role in glucose metabolism. However, whether LRP6 is involved in the insulin resistance of CG-IUGR is unclear. This study aimed to explore the role of LRP6 in insulin signaling in response to CG-IUGR.

Methods

The CG-IUGR rat model was established via a maternal gestational nutritional restriction followed by postnatal litter size reduction. The mRNA and protein expression of the components in the insulin pathway, LRP6/β-catenin and mammalian target of rapamycin (mTOR)/S6 kinase (S6K) signaling, was determined. Liver tissues were immunostained for the expression of LRP6 and β-catenin. LRP6 was overexpressed or silenced in primary hepatocytes to explore its role in insulin signaling.

Results

Compared with the control rats, CG-IUGR rats showed higher homeostasis model assessment for insulin resistance (HOMA-IR) index and fasting insulin level, decreased insulin signaling, reduced mTOR/S6K/ insulin receptor substrate-1 (IRS-1) serine307 activity, and decreased LRP6/β-catenin in the liver tissue. The knockdown of LRP6 in hepatocytes from appropriate-for-gestational-age (AGA) rats led to reductions in insulin receptor (IR) signaling and mTOR/S6K/IRS-1 serine307 activity. In contrast, LRP6 overexpression in hepatocytes of CG-IUGR rats resulted in elevated IR signaling and mTOR/S6K/IRS-1 serine307 activity.

Conclusion

LRP6 regulated the insulin signaling in the CG-IUGR rats via two distinct pathways, IR and mTOR-S6K signaling. LRP6 may be a potential therapeutic target for insulin resistance in CG-IUGR individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma D, Shastri S, Farahbakhsh N, et al. Intrauterine growth restriction — part 1. J Matern Fetal Neonatal Med, 2016,29(24):3977–3987

    Article  PubMed  Google Scholar 

  2. **e X, Lin T, Zhang M, et al. IUGR with infantile overnutrition programs an insulin-resistant phenotype through DNA methylation of peroxisome proliferator-activated receptor-γ coactivator-1α in rats. Pediatr Res, 2015,77(5):625–632

    Article  CAS  PubMed  Google Scholar 

  3. Casey PH, Whiteside-mansell L, Barrett K, et al. Impact of prenatal and/or postnatal growth problems in low birth weight preterm infants on school-age outcomes: an 8-year longitudinal evaluation. Pediatrics, 2006,118(3):1078–1086

    Article  PubMed  Google Scholar 

  4. Ong KK. Catch-up growth in small for gestational age babies: good or bad? Curr Opin Endocrinol Diabetes Obes, 2007,14(1):30–34

    Article  CAS  PubMed  Google Scholar 

  5. Hermann GM, Miller RL, Erkonen GE, et al. Neonatal catch up growth increases diabetes susceptibility but improves behavioral and cardiovascular outcomes of low birth weight male mice. Pediatr Res, 2009,66(1):53–58

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fernandez-twinn DS, Ozanne SE. Early life nutrition and metabolic programming. Ann N Y Acad Sci, 2010,1212:78–96

    Article  CAS  PubMed  Google Scholar 

  7. Cianfarani S, Agostoni C, Bedogni G, et al. Effect of intrauterine growth retardation on liver and long-term metabolic risk. Int J Obes, 2012,36(10):1270–1277

    Article  CAS  Google Scholar 

  8. Berends LM, Fernandez-twinn DS, Martin-gronert MS, et al. Catch-up growth following intra-uterine growth-restriction programmes an insulin-resistant phenotype in adipose tissue. Int J Obes, 2013,37(8):1051–1057

    Article  CAS  Google Scholar 

  9. Simmons RA, Templeton LJ, Gertz SJ. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes, 2001,50(10):2279–2286

    Article  CAS  PubMed  Google Scholar 

  10. Berends LM, Dearden L, Tung YCL, et al. Programming of central and peripheral insulin resistance by low birthweight and postnatal catch-up growth in male mice. Diabetologia, 2018,61(10):2225–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ong KK, Ahmed ML, Emmett PM, et al. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ, 2000,320(7240):967–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duan C, Liu M, Xu H, et al. Decreased expression of GLUT4 in male CG-IUGR rats may play a vital role in their increased susceptibility to diabetes mellitus in adulthood. Acta biochimica et biophysica Sinica, 2016,48(10):872–882

    Article  CAS  PubMed  Google Scholar 

  13. Hofman PL, Regan F, Harris M, et al. The metabolic consequences of prematurity. Growth Horm IGF Res, 2004,14(Suppl A):S136–139

    Article  CAS  PubMed  Google Scholar 

  14. Mericq V. Low birth weight and endocrine dysfunction in postnatal life. Pediatr Endocrinol Rev, 2006,4(1):3–14

    PubMed  Google Scholar 

  15. Longo S, Bollani L, Decembrino L, et al. Short-term and long-term sequelae in intrauterine growth retardation (IUGR). J Matern Fetal Neonatal Med, 2013,26(3):222–225

    Article  CAS  PubMed  Google Scholar 

  16. Abou Ziki MD, Mani A. The interplay of canonical and noncanonical Wnt signaling in metabolic syndrome. Nutr Res, 2019,70:18–25

    Article  CAS  PubMed  Google Scholar 

  17. Liu W, Singh R, Choi CS, et al. Low density lipoprotein (LDL) receptor-related protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure. J Biol Chem, 2012,287(10):7213–7223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Au DT, Migliorini M, Strickland DK, et al. Macrophage LRP1 Promotes Diet-Induced Hepatic Inflammation and Metabolic Dysfunction by Modulating Wnt Signaling. Mediators Inflamm, 2018,2018:790–2841

    Article  Google Scholar 

  19. Wang ZM, Luo JQ, Xu LY, et al. Harnessing low-density lipoprotein receptor protein 6 (LRP6) genetic variation and Wnt signaling for innovative diagnostics in complex diseases. Pharmacogenomics J, 2018,18(3):351–358

    Article  CAS  PubMed  Google Scholar 

  20. Singh R, Smith E, Fathzadeh M, et al. Rare nonconservative LRP6 mutations are associated with metabolic syndrome. Hum Mutat, 2013,34(9):1221–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh R, De Aguiar RB, Naik S, et al. LRP6 enhances glucose metabolism by promoting TCF7L2-dependent insulin receptor expression and IGF receptor stabilization in humans. Cell Metab, 2013,17(2):197–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mao Z, Zhang W. Role of mTOR in Glucose and Lipid Metabolism. Int J Mol Sci, 2018,19(7):2043

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yoon MS. The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling. Nutrients, 2017,9(11):1176

    Article  PubMed  PubMed Central  Google Scholar 

  24. Um SH, Frigerio F, Watanabe M, et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature, 2004,431(7005):200–205

    Article  CAS  PubMed  Google Scholar 

  25. Gual P, Le Marchand-brustel Y, Tanti J F. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie, 2005,87(1):99–109

    Article  CAS  PubMed  Google Scholar 

  26. Rui L, Aguirre V, Kim JK, et al. Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest, 2001,107(2):181–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kang S. Low-density lipoprotein receptor-related protein 6-mediated signaling pathways and associated cardiovascular diseases: diagnostic and therapeutic opportunities. Hum Genet, 2020,139(4):447–459

    Article  CAS  PubMed  Google Scholar 

  28. Li L, Xue J, Wan J, et al. LRP6 Knockdown Ameliorates Insulin Resistance via Modulation of Autophagy by Regulating GSK3β Signaling in Human LO2 Hepatocytes. Front Endocrinol (Lausanne), 2019,10:73

    Article  CAS  PubMed  Google Scholar 

  29. Santoleri D, Titchenell PM. Resolving the Paradox of Hepatic Insulin Resistance. Cell Mol Gastroenterol Hepatol, 2019,7(2):447–456

    Article  PubMed  Google Scholar 

  30. Ferris HA, Kahn CR. Unraveling the Paradox of Selective Insulin Resistance in the Liver: the Brain-Liver Connection. Diabetes, 2016,65(6):1481–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liao L, Zheng R, Wang C, et al. The influence of down-regulation of suppressor of cellular signaling proteins by RNAi on glucose transport of intrauterine growth retardation rats. Pediatr Res, 2011, 69(6):497–503

    Article  CAS  PubMed  Google Scholar 

  32. Ye J, Zheng R, Wang Q, et al. Downregulating SOCS3 with siRNA ameliorates insulin signaling and glucose metabolism in hepatocytes of IUGR rats with catch-up growth. Pediatr Res, 2012,72(6):550–559

    Article  CAS  PubMed  Google Scholar 

  33. Zheng RD, Liao LH, Ye J, et al. Effects of SOCS 1/3 gene silencing on the expression of C/EBPα and PPARγ during differentiation and maturation of rat preadipocytes. Pediatr Res, 2013,73(3):263–267

    Article  CAS  PubMed  Google Scholar 

  34. Haffner SM, Miettinen H, Stern MP. The homeostasis model in the San Antonio Heart Study. Diabetes Care, 1997,20(7):1087–1092

    Article  CAS  PubMed  Google Scholar 

  35. Shen L, Hillebrand A, Wang DQ, et al. Isolation and primary culture of rat hepatic cells. J Vis Exp, 2012,(64):3917

  36. Xu Z, He X, Shi X, et al. Analysis of differentially expressed genes among human hair follicle-derived iPSCs, induced hepatocyte-like cells, and primary hepatocytes. Stem Cell Res Ther, 2018,9(1):211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Horai S, Yanagi K, Kaname T, et al. Establishment of a primary hepatocyte culture from the small Indian mongoose (Herpestes auropunctatus) and distribution of mercury in liver tissue. Ecotoxicology, 2014,23(9):1681–1689

    Article  CAS  PubMed  Google Scholar 

  38. Bae EJ, Yang YM, Kim JW, et al. Identification of a novel class of dithiolethiones that prevent hepatic insulin resistance via the adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway. Hepatology, 2007,46(3):730–739

    Article  CAS  PubMed  Google Scholar 

  39. He B, Wen Y, Hu S, et al. Prenatal caffeine exposure induces liver developmental dysfunction in offspring rats. J Endocrinol, 2019,242(3):211–226

    Article  CAS  PubMed  Google Scholar 

  40. Youngren JF. Regulation of insulin receptor function. Cell Mol Life Sci, 2007,64(7–8):873–891

    Article  CAS  PubMed  Google Scholar 

  41. Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes, 2006,55(8):2392–2397

    Article  CAS  PubMed  Google Scholar 

  42. Smadja-lamère N, Shum M, Déléris P, et al. Insulin activates RSK (p90 ribosomal S6 kinase) to trigger a new negative feedback loop that regulates insulin signaling for glucose metabolism. J Biol Chem, 2013,288(43):31165–31176

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen Y, Huang L, Qi X, et al. Insulin Receptor Trafficking: Consequences for Insulin Sensitivity and Diabetes. Int J Mol Sci, 2019,20(20):5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ferenc K, Pietrzak P, Wierzbicka M, et al. Alterations in the liver of intrauterine growth retarded piglets may predispose to development of insulin resistance and obesity in later life. J Physiol Pharmacol, 2018,69(2)

  45. Swe MT, Pongchaidecha A, Chatsudthipong V, et al. Molecular signaling mechanisms of renal gluconeogenesis in nondiabetic and diabetic conditions. J Cell Physiol, 2019,234(6):8134–8151

    Article  CAS  PubMed  Google Scholar 

  46. Barthel A, Schmoll D. Novel concepts in insulin regulation of hepatic gluconeogenesis. Am J Physiol Endocrinol Metab, 2003,285(4):E685–E692

    Article  CAS  PubMed  Google Scholar 

  47. Mericq V, Martinez-aguayo A, Uauy R, et al. Long-term metabolic risk among children born premature or small for gestational age. Nat Rev Endocrinol, 2017,13(1):50–62

    Article  CAS  PubMed  Google Scholar 

  48. Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell, 2000,6(1):87–97

    Article  CAS  PubMed  Google Scholar 

  49. Zhang W, Shen XY, Zhang WW, et al. Di-(2-ethylhexyl) phthalate could disrupt the insulin signaling pathway in liver of SD rats and L02 cells via PPARγ. Toxicol Appl Pharmacol, 2017,316:17–26

    Article  CAS  PubMed  Google Scholar 

  50. Cheng PW, Chen YY, Cheng WH, et al. Wnt Signaling Regulates Blood Pressure by Downregulating a GSK-3β-Mediated Pathway to Enhance Insulin Signaling in the Central Nervous System. Diabetes, 2015,64(10):3413–3424

    Article  CAS  PubMed  Google Scholar 

  51. Li R, Ou J, Li L, et al. The Wnt Signaling Pathway Effector TCF7L2 Mediates Olanzapine-Induced Weight Gain and Insulin Resistance. Front Pharmacol, 2018,9:379

    Article  PubMed  PubMed Central  Google Scholar 

  52. Karczewska-kupczewska M, Stefanowicz M, Matulewicz N, et al. Wnt Signaling Genes in Adipose Tissue and Skeletal Muscle of Humans With Different Degrees of Insulin Sensitivity. J Clin Endocrinol Metabol, 2016,101(8):3079–3087

    Article  CAS  Google Scholar 

  53. Palsgaard J, Emanuelli B, Winnay JN, et al. Cross-talk between insulin and Wnt signaling in preadipocytes: role of Wnt co-receptor low density lipoprotein receptor-related protein-5 (LRP5). J Biol Chem, 2012,287(15):12016–12026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yoon JC, Ng A, Kim BH, et al. Wnt signaling regulates mitochondrial physiology and insulin sensitivity. Genes Dev, 2010,24(14):1507–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mani A, Radhakrishnan J, Wang H, et al. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science, 2007,315(5816):1278–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bronsveld HK, De Bruin ML, Wesseling J, et al. The association of diabetes mellitus and insulin treatment with expression of insulin-related proteins in breast tumors. BMC Cancer, 2018,18(1):224

    Article  PubMed  PubMed Central  Google Scholar 

  57. Qiao S, Mao G, Li H, et al. DPP-4 Inhibitor Sitagliptin Improves Cardiac Function and Glucose Homeostasis and Ameliorates β-Cell Dysfunction Together with Reducing S6K1 Activation and IRS-1 and IRS-2 Degradation in Obesity Female Mice. J Diabetes Res, 2018,2018:3641516

    Article  PubMed  PubMed Central  Google Scholar 

  58. Guiducci L, Iervasi G, Quinones-galvan A. On the paradox insulin resistance/insulin hypersensitivity and obesity: two tales of the same history. Expert Rev Cardiovasc Ther, 2014,12(6):637–642

    Article  CAS  PubMed  Google Scholar 

  59. Ehrenkranz RA, Dusick AM, Vohr BR, et al. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics, 2006,117(4):1253–1261

    Article  PubMed  Google Scholar 

  60. Cunha AC, Pereira RO, Pereira MJ, et al. Long-term effects of overfeeding during lactation on insulin secretion—the role of GLUT-2. J Nutr Biochem, 2009,20(6):435–442

    Article  CAS  PubMed  Google Scholar 

  61. Conceicao EP, Trevenzoli IH, Oliveira E, et al. Higher white adipocyte area and lower leptin production in adult rats overfed during lactation. Horm Metab Res, 2011,43(7):513–516

    Article  CAS  PubMed  Google Scholar 

  62. Faienza M F, Brunetti G, Ventura A, et al. Nonalcoholic fatty liver disease in prepubertal children born small for gestational age: influence of rapid weight catch-up growth. Horm Research in Paediatr, 2013,79(2):103–109

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zhang or ** Xuan.

Additional information

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

This work was supported by the National Natural Science Foundation of China (No. 82001651 and No. 81660268).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, Xm., Cao, Ql., Sun, Yj. et al. LRP6 Bidirectionally Regulates Insulin Sensitivity through Insulin Receptor and S6K Signaling in Rats with CG-IUGR. CURR MED SCI 43, 274–283 (2023). https://doi.org/10.1007/s11596-022-2683-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-022-2683-4

Key words

Navigation