Log in

Preparation of Nitrogen-doped Carbon Dots from Coke Powder as a Fluorescent Chemosensor for Selective and Sensitive Detection of Cr (VI)

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The nitrogen-doped carbon dots (N-CDs) were prepared by using coke powder as carbon source and one-step hydrothermal method. The N-CDs were studied as a fluorescent chemosensor for determining Cr(VI) in water. The selective, sensitive, reproducibility and stability of as-prepared N-CDs were investigated. The morphology, composition and properties of N-CDs were characterized by a series of methods. The fluorescence quenching of N-CDs by Cr(VI) was explored. The experimental results reveal that the obtained N-CDs have great hydrophilicity and strong luminescence properties, which demonstrates the successful do** of nitrogen into the CDs. The surface-active groups and emission wavelength range of CDs increase due to the electronegativity and electron donor effect of do** N atom. Furthermore, the N-CDs exhibit good photochemical properties for the detection of Cr(VI), including a wide linear range from 0.3 to 200 µM (R2=0.9935) and a low detection limit of 0.10 µM at the signal-to-noise ratio of 3 (S/N=3). Moreover, the N-CDs as a sensor was used successfully for Cr (VI) detection in real water samples with recovery rates of 99.9%–110.6%. This sensor also shows highly reproducibility and stability. The N-CDs fluorescent chemical sensor may be a potential candidate for applying in the field of other fluorescent chemical sensing, catalysis, photoelectric devices and other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruchez M, Moronne M, Gin P, et al. Semiconductor Nanocrystals as Fluorescent Biological Labels[J]. Science, 1998, 281(5385): 2013–2016

    Article  CAS  Google Scholar 

  2. Chen Q, Song Z, Zhang D, et al. Effect of Size on the Electronic Structure and Optical Properties of Cubic CsPbBr3 Quantum Dots[J]. IEEE Journal of Quantum Electronics, 2019, 56(1): 1–7

    Google Scholar 

  3. Yin X, Li X, Zhu C, et al. Integration of Fluorescence/Photoacoustic Imaging and Targeted Chemo/Photothermal Therapy with Ag2Se@BSA-RGD Nanodots[J]. New J. Chem., 2020, 44(12): 4 850–4 857

    Article  CAS  Google Scholar 

  4. Liu H, Kang Y, Meng T, et al. High Photon Absorptivity of Quantum Dot Infrared Photodetectors Achieved by the Surface Plasmon Effect of Metal Nanohole Array[J]. Nanoscale Research Letters, 2020, 15(1): 1–12

    Article  CAS  Google Scholar 

  5. Othman HO, Salehnia F, Fakhri N, et al. A Highly Sensitive Fluorescent Immunosensor for Sensitive Detection of Nuclear Matrix Protein 22 as Biomarker for Early Stage Diagnosis of Bladder Cancer[J]. RSC Advances, 2020, 10(48): 28 865–28 871

    Article  CAS  Google Scholar 

  6. Kortel M, Mansuriya BD, Vargas Santana N, et al. Graphene Quantum Dots as Flourishing Nanomaterials for Bio-Imaging, Therapy Development, and Micro-Supercapacitors[J]. Micromachines, 2020, 11(9): 866

    Article  Google Scholar 

  7. Badıllı U, Mollarasouli F, Bakirhan NK, et al. Role of Quantum Dots in Pharmaceutical and Biomedical Analysis, and Its Application in Drug Delivery[J]. TrAC, Trends Anal. Chem., 2020, 131: 116 013

    Article  Google Scholar 

  8. Gajjela RS, Koenraad PM. Atomic-Scale Characterization of Droplet Epitaxy Quantum Dots[J]. Nanomaterials, 2021, 11(1): 85

    Article  CAS  Google Scholar 

  9. Ghosal K, Ghosh A. Carbon Dots: The Next Generation Platform for Biomedical Applications[J]. Materials Science and Engineering: C, 2019, 96: 887–903

    Article  CAS  Google Scholar 

  10. Baek SW, Molet P, Choi MJ, et al. Nanostructured Back Reflectors for Efficient Colloidal Quantum-Dot Infrared Optoelectronics[J]. Adv. Mater, 2019, 31(33): 1 901 745

    Article  Google Scholar 

  11. Siddique A, Singh VP, Chatterjee S, et al. Facile Synthesis and Versatile Applications of Amorphous Carbon Dot[J]. Materials Today: Proceedings, 2018, 5(3): 10077–10083

    CAS  Google Scholar 

  12. Ding L, Peng Z, Shen W, et al. Microwave Synthesis of CdTe/TGA Quantum Dots and Their Thermodynamic Interaction with Bovine Serum Albumin[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31(6): 1 408–1 414

    Article  CAS  Google Scholar 

  13. Ding L, He H, Li S, et al. Preparation of Different Lights Irradiated ZnSe/GSH QDs and Their Interaction with BSA[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(4): 858–865

    Article  CAS  Google Scholar 

  14. Zhao D, Liu X, Zhang R, et al. Facile One-Pot Synthesis of Multifunctional Protamine Sulfate-Derived Carbon Dots for Antibacterial Applications and Fluorescence Imaging of Bacteria[J]. New J. Chem., 2021, 45(2): 1010–1019

    Article  CAS  Google Scholar 

  15. Wang K, Liang L, Xu J, et al. Synthesis and Bacterial Inhibition of Novel Ag2S-N-CQD Composite Material[J]. Chemical Papers, 2020, 74(5): 1 517–1 524

    Article  CAS  Google Scholar 

  16. He Z, Huang H, Jiang R, et al. Click Multiwalled Carbon Nanotubes: A Novel Method for Preparation of Carboxyl Groups Functionalized Carbon Quantum Dots[J]. Materials Science and Engineering C, 2020, 108: 110 376

    Article  CAS  Google Scholar 

  17. Borna S, Sabzi RE, Pirsa S. Synthesis of Carbon Quantum Dots from Apple Juice and Graphite: Investigation of Fluorescence and Structural Properties and Use as an Electrochemical Sensor for Measuring Letrozole[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(8): 10 866–10 879

    CAS  Google Scholar 

  18. Qiang R, Yang S, Hou K, et al. Synthesis of Carbon Quantum Dots with Green Luminescence from Potato Starch[J]. New J. Chem., 2019, 43(27): 10 826–10 833

    Article  CAS  Google Scholar 

  19. Zheng Y, Zheng J, Wang J, et al. Facile Preparation of Stable Solid-State Carbon Quantum Dots with Multi-Peak Emission[J]. Nanomaterials, 2020, 10(2): 303

    Article  CAS  Google Scholar 

  20. Deng Y, Zhou Y, Ye S, et al. Alcohol Solvent Effect on Fluorescence Properties in the Solvothermal Synthesis of Carbon Quantum Dots[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2022, 37(1): 23–27

    Article  CAS  Google Scholar 

  21. Zhang Z, Zhang J, Chen N, et al. Graphene Quantum Dots: An Emerging Material for Energy-Related Applications and Beyond[J]. Energy Environ. Sci., 2012, 5(10): 8 869–8 890

    Article  CAS  Google Scholar 

  22. Atchudan R, Edison TNJI, Shanmugam M, et al. Sustainable Synthesis of Carbon Quantum Dots from Banana Peel Waste Using Hydrothermal Process for in vivo Bioimaging[J]. Physica E: Low-dimensional Systems and Nanostructures, 2021, 126: 114 417

    Article  CAS  Google Scholar 

  23. Sun D, Ban R, Zhang PH, et al. Hair Fiber as a Precursor for Synthesizing of Sulfur-and Nitrogen-Co-Doped Carbon Dots with Tunable Luminescence Properties[J]. Carbon, 2013, 64: 424–434

    Article  CAS  Google Scholar 

  24. Abazar F, Noorbakhsh A. Chitosan-Carbon Quantum Dots as a New Platform for Highly Sensitive Insulin Impedimetric Aptasensor[J]. Sensors Actuators B: Chem., 2020, 304: 127 281

    Article  CAS  Google Scholar 

  25. Han G, Cai J, Liu C, et al. Highly Sensitive Electrochemical Sensor Based on Xylan-Based Ag@CQDs-rGO Nanocomposite for Dopamine Detection[J]. Appl. Surf. Sci., 2021, 541: 148 566

    Article  CAS  Google Scholar 

  26. Wang Y, Hu X, Li W, et al. Preparation of Boron Nitrogen Co-Doped Carbon Quantum Dots for Rapid Detection of Cr (VI)[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 243: 118 807

    Article  CAS  Google Scholar 

  27. Kong L, Chu X, Liu W, et al. Glutathione-Directed Synthesis of Cr (VI) and Temperature-Responsive Fluorescent Copper Nanoclusters and Their Applications in Cellular Imaging[J]. New J. Chem., 2016, 40(5): 4 744–4 750

    Article  CAS  Google Scholar 

  28. Ding L, Zhou PJ, Zhan HJ, et al. Microwave-Assisted Synthesis of L-Glutathione Capped ZnSe QDs and Its Interaction with BSA by Spectroscopy[J]. J. Lumin., 2013, 142: 167–172

    Article  CAS  Google Scholar 

  29. Chen Q, Li X, **e R, et al. Novel Rapid Synthesis of Nanoscale Tungsten Nitride Using Non-Toxic Nitrogen Source[J]. Ceram. Int., 2020, 46(2): 2 580–2 584

    Article  CAS  Google Scholar 

  30. Yoshinaga T, Akiu M, Iso Y, et al. Photoluminescence Properties of L-Cysteine-Derived Carbon Dots Prepared in Non-Aqueous and Aqueous Solvents[J]. J. Lumin., 2020, 224: 117 260

    Article  CAS  Google Scholar 

  31. Liu H, Xu A, Feng Z, et al. pH-Dependent Fluorescent Quenching of Graphene Oxide Quantum Dots: Towards Hydroxyl[J]. Materials Science and Engineering: B, 2020, 260: 114 627

    Article  CAS  Google Scholar 

  32. Xue R, Fu L, Dong S, et al. Promoting Chlorella Photosynthesis and Bioresource Production Using Directionally Prepared Carbon Dots with Tunable Emission[J]. J. Colloid Interface Sci., 2020, 569: 195–203

    Article  CAS  Google Scholar 

  33. Esmaeilzadeh M, Sadjadi S, Salehi Z. Pd Immobilized on Hybrid of Magnetic Graphene Quantum Dots and Cyclodextrin Decorated Chitosan: An Efficient Hydrogenation Catalyst[J]. Int. J. Biol. Macromol., 2020, 150: 441–448

    Article  CAS  Google Scholar 

  34. Hu C, Liu Y, Yang Y, et al. One-Step Preparation of Nitrogen-Doped Graphene Quantum Dots from Oxidized Debris of Graphene Oxide[J]. Journal of Materials Chemistry B, 2013, 1(1): 39–42

    Article  CAS  Google Scholar 

  35. Zhao L, Di F, Wang D, et al. Chemiluminescence of Carbon Dots under Strong Alkaline Solutions: A Novel Insight into Carbon Dot Optical Properties[J]. Nanoscale, 2013, 5(7): 2 655–2 658

    Article  CAS  Google Scholar 

  36. Zheng M, **e Z, Qu D, et al. On-Off-on Fluorescent Carbon Dot Nanosensor for Recognition of Chromium (VI) and Ascorbic Acid Based on the Inner Filter Effect[J]. ACS Applied Materials & Interfaces, 2013, 5(24): 13 242–13 247

    Article  CAS  Google Scholar 

  37. Chandra S, Patra P, Pathan SH, et al. Luminescent S-Doped Carbon Dots: An Emergent Architecture for Multimodal Applications[J]. Jour- nal of Materials Chemistry B, 2013, 1(18): 2 375–2 382

    Article  CAS  Google Scholar 

  38. Li M, Ma C, Wang G, et al. Controlling the up-Conversion Photoluminescence Property of Carbon Quantum Dots (CQDs) by Modifying Its Surface Functional Groups for Enhanced Photocatalytic Performance of CQDs/BiVO4 under a Broad-Spectrum Irradiation[J]. Res. Chem. Intermed., 2021, 47(8): 3 469–3 485

    Article  CAS  Google Scholar 

  39. Yang G, Wan X, Su Y, et al. Acidophilic S-Doped Carbon Quantum Dots Derived from Cellulose Fibers and Their Fluorescence Sensing Performance for Metal Ions in an Extremely Strong Acid Environment[J]. Journal of Materials Chemistry A, 2016, 4(33): 12 841–12 849

    Article  CAS  Google Scholar 

  40. Liu W, Diao H, Chang H, et al. Green Synthesis of Carbon Dots from Rose-Heart Radish and Application for Fe3+ Detection and Cell Imaging[J]. Sensors Actuators B: Chem., 2017, 241: 190–198

    Article  Google Scholar 

  41. Zhu J, Chu H, Wang T, et al. Fluorescent Probe Based Nitrogen Doped Carbon Quantum Dots with Solid-State Fluorescence for the Detection of Hg2+ and Fe3+ in Aqueous Solution[J]. Microchem. J., 2020, 158:105 142

    Article  CAS  Google Scholar 

  42. Ma Z, Ma Y, Gu M, et al. Carbon Dots Derived from the Maillard Reaction for pH Sensors and Cr (VI) Detection[J]. Nanomaterials, 2020, 10(10): 1 924

    Article  CAS  Google Scholar 

  43. Hu G, Ge L, Li Y, et al. Carbon Dots Derived from Flax Straw for Highly Sensitive and Selective Detections of Cobalt, Chromium, and Ascorbic Acid[J]. J. Colloid Interface Sci., 2020, 579: 96–108

    Article  CAS  Google Scholar 

  44. ACS Sustainable Chemistry & Engineering Bu L, Peng J, Peng H, et al. Fluorescent Carbon Dots for the Sensitive Detection of Cr (VI) in Aqueous Media and Their Application in Test Papers[J]. RSC Advances, 2016, 6(98): 95 469–95 475

    Article  Google Scholar 

  45. Feng S, Gao Z, Liu H, et al. Feasibility of Detection Valence Speciation of Cr (III) and Cr (VI) in Environmental Samples by Spectrofluorimetric Method with Fluorescent Carbon Quantum Dots[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 212: 286–292

    Article  CAS  Google Scholar 

  46. Zhang Y, Dong Y, Zheng H, et al. High Quantum Yield Fluorescent Chitosan-Based Carbon Dots for the Turn-on-off-on Detection of Cr (VI) and H2O2[J]. Nano, 2021, 16(09): 2150103

    Article  CAS  Google Scholar 

  47. **a L, Li X, Zhang Y, et al. Sustainable and Green Synthesis of Waste-Biomass-Derived Carbon Dots for Parallel and Semi-Quantitative Visual Detection of Cr (VI) and Fe3+[J]. Molecules, 2022, 27(4): 1 258

    Article  CAS  Google Scholar 

  48. Nordberg GF, Flower B, Nordberg M, et al. Handbook on the Toxicology of Metals[M]. The Netherlands: Academic Press, 2007: 1 385

    Google Scholar 

Download references

Funding

Funded by the National Nature Science Foundation of China(61904130), the Open Fund of the Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture of Fujian University (G2-KF2002), the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University (JDGD202017), the Open Fund of the Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steel Making (Wuhan University of Science and Technology) of China (KF-20-5), the Fund of Hangzhou Meishi Technology Co., Ltd of China (2021420112000081), the Key Research and Development Program of Hubei Province (2020BAB084), and the Program (BG20190227001) of High-end Foreign Experts of the State of the State Administration of Foreign Experts Affairs (SAFEA)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Ding  (丁玲) or Lin Wu  (伍林).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J., Li, S., Ding, L. et al. Preparation of Nitrogen-doped Carbon Dots from Coke Powder as a Fluorescent Chemosensor for Selective and Sensitive Detection of Cr (VI). J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 1096–1104 (2022). https://doi.org/10.1007/s11595-022-2639-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2639-3

Key words

Navigation