Log in

Solidification Behavior of in situ TiB2/Cu Composite Powders during Reactive Gas Atomization

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

2wt% TiB2/Cu composite powders were fabricated in situ by reactive gas atomization. The fabricated composite powder exhibits high sphericity, and the powder sizes range from 5 µm to 150 µm. The morphology of the Cu matrix and the distribution of the TiB2 particles in the composite powders vary with the powder size. The critical transitions of interface morphologies from dendritic-to-cellular and cellular-to-planar interfaces occurs when the composite powder sizes decrease to 34 µm and 14 µm, respectively. Compared with pure Cu droplets, the composite droplets undergo critical transition of the interface morphologies at a smaller droplet size corresponding to a higher cooling rate because the existence of TiB2 particles can cause instability in the advancing solidification front and heterogeneous nucleation. With decreasing powder size, the extent of the TiB2 particle interdendritic segregation decreases as the result of enhanced engulfment of TiB2 particles by the advancing solidification front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dadbakhsh S, Hao L. Effect of Al Alloys on Selective Laser Melting Behaviour and Microstructure of in situ Formed Particle Reinforced Composites[J]. J. Alloys Compd., 2012, 541: 328–334

    Article  CAS  Google Scholar 

  2. Hong C, Gu D, Dai D, et al. Laser Additive Manufacturing of Ultrafine TiC Particle Reinforced Inconel 625 based composite Parts: Tailored Microstructures and Enhanced Performance[J]. Mater. Sci. Eng. A, 2015, 635: 118–128

    Article  CAS  Google Scholar 

  3. Zhang LC, Attar H. Selective Laser Melting of Titanium Alloys and Titanium Matrix Composites for Biomedical Applications: A Review[J]. Adv. Eng. Mater., 2015, 18: 463–475

    Article  Google Scholar 

  4. Li XP, Ji G, Chen Z, et al. Selective Laser Melting of Nano-TiB2 Decorated AlSi10Mg Alloy with High Fracture Strength and Ductility[J]. Acta Mater., 2017, 129: 183–193

    Article  CAS  Google Scholar 

  5. Chen G, Zhou Q, Zhao SY, et al. A Pore Morphological Study of Gas-atomized Ti-6Al-4V Powders by Scanning Electron Microscopy and Synchrotron X-ray Computed Tomography[J]. Powder Technol., 2018, 330: 425–430

    Article  CAS  Google Scholar 

  6. Woo DJ, Sneed B, Peerally F, et al. Synthesis of Nanodiamond-reinforced Aluminum Metal Composite Powders and Coatings using High-energy Ball Milling and Cold Spray[J]. Carbon, 2013, 63: 404–415

    Article  CAS  Google Scholar 

  7. Arai S, Endo M. Carbon Nanofiber-copper Composite Powder Prepared by Electrodeposition[J]. Electrochem. Commun., 2003, 5: 797–799

    Article  CAS  Google Scholar 

  8. Eslamian M, Rak J, Ashgriz N. Preparation of Aluminum/Silicon Carbide Metal Matrix Composites using Centrifugal Atomization[J]. Powder Technol., 2008, 184: 11–20

    Article  CAS  Google Scholar 

  9. Li X, Sander S, Ellendt N, et al. Coupled Simulation of Spray Process for Metal Matrix Composite Powder Production[C]. In: Proc. of 25th ILASS-Europe, 2013, 1–12

  10. Chen M, Li X, Ji G, et al. Novel Composite Powders With Uniform TiB2 Nano-particle Distribution for 3D Printing[J]. Appl. Sci., 2017, 7: 250

    Article  Google Scholar 

  11. Heidloff AJ, Rieken JR, Anderson IE, et al. Advanced Gas Atomization Processing for Ti and Ti Alloy Powder Manufacturing[J]. JOM, 2010, 62: 35–41

    Article  CAS  Google Scholar 

  12. Lee ES, Ahn S. Solidification Progress and Heat Transfer Analysis of Gas-atomized Alloy Droplets during Spray Forming[J]. Acta Metall. Mater., 1994, 42: 3 231–3 243

    Article  CAS  Google Scholar 

  13. Perepezko JH, Sebright JL, Höckel PG, et al. Undercooling and Solidification of Atomized Liquid Droplets[J]. Mater. Sci. Eng. A, 2002, 326: 144–153

    Article  Google Scholar 

  14. Tourret D, Reinhart G, Gandin CA, et al. Gas Atomization of Al-Ni Powders: Solidification Modeling and Neutron Diffraction Analysis[J]. Acta Mater., 2011, 59: 6 658–6 669

    Article  CAS  Google Scholar 

  15. Heringer R, Gandin CA, Lesoult G, et al. Atomized Droplet Solidification as an Equiaxed Growth Model[J]. Acta Mater., 2006, 54: 4 427–4 440

    Article  CAS  Google Scholar 

  16. Behulova M, Moravcik R, Kusy M, et al. Influence of Atomisation on Solidification Microstructures in the Rapidly Solidified Powder of the Cr-Mo-V Tool Steel[J]. Mater. Sci. Eng. A, 2001, 304–306: 540–543

    Article  Google Scholar 

  17. Behúlová M, Mesárošová J, Grgač P. Analysis of The Influence of the Gas Velocity, Particle Size and Nucleation Temperature on the Thermal History and Microstructure Development in the Tool Steel during Atomization[J]. J. Alloys Compd., 2014, 615S: S217–S223

    Article  Google Scholar 

  18. Braszczyński J, Zyska A. Analysis of the Influence of Ceramic Particles on the Solidification Process of Metal Matrix Composites[J]. Mater. Sci. Eng. A, 2000, 278: 195–203

    Article  Google Scholar 

  19. Dong H, Chen YZ, Wang K, et al. In situ Observation of Remelting Induced Anomalous Eutectic Structure Formation in an Undercooled Ni-18.7at% Sn Eutectic Alloy[J]. Scr. Mater., 2020, 177: 123–127

    Article  CAS  Google Scholar 

  20. Kusý M, Behúlová M, Grgač P. Influence of the Thermal History of a Particle During Atomization on the Morphology of Carbides in a Hypereutectic Iron based Alloy[J]. J. Alloys Compd., 2012, 536S: S541–S545

    Article  Google Scholar 

  21. Incropera FP, DeWitt DP. Fundamentals of Heat and Mass Transfer[M]. 4th ed. John Wiley & Sons, New York, 1996

    Google Scholar 

  22. Sang L, Xu Y, Fang P, et al. The Influence of Cooling Rate on the Microstructure and Phase Fraction of Gas Atomized NiAl3 Alloy Powders during Rapid Solidification[J]. Vacuum, 2018, 157: 354–360

    Article  CAS  Google Scholar 

  23. Pryds NH, Pedersen AS. Rapid Solidification of Martensitic Stainless Steel Atomized Droplets[J]. Metall. Mater. Trans. A, 2002, 33: 3 755–3 761

    Article  Google Scholar 

  24. Tiedje N, Hansen PN, Pedersen AS. Modeling of Primary and Secondary Dendrites in a Cu-6 Wt Pct Sn Alloy[J]. Metall. Mater. Trans. A, 1996, 27: 4 085–4 093

    Article  Google Scholar 

  25. Mullins WW, Sekerka RF. Stability of a Planar Interface during Solidification of a Dilute Binary Alloy[J]. J. Appl. Phys., 1964, 35: 444–451

    Article  Google Scholar 

  26. Sekhar JA, Trivedi R. Solidification Microstructure Evolution in the Presence of Inert Particles[J]. Mater. Sci. Eng. A, 1991, 147: 9–21

    Article  Google Scholar 

  27. Stefanescu DM, Dhindaw BK, Kacar SA, et al. Behavior of Ceramic Particles at the Solid-liquid Metal Interface in Metal Matrix Composites[J]. Metall. Trans. A, 1998, 19: 2 847–2 855

    Article  Google Scholar 

  28. Youssef YM, Dashwood RJ, Lee PD. Effect of Clustering on Particle Pushing and Solidification Behavior in TiB2 Reinforced Aluminium PMMCs[J]. Composites Part A, 2005, 36: 747–763

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Liang  (梁淑华).

Additional information

Funded by the National Natural Science Foundation of China (Nos. U1502274 and 51834009)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhang, M., Li, Y. et al. Solidification Behavior of in situ TiB2/Cu Composite Powders during Reactive Gas Atomization. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 203–208 (2021). https://doi.org/10.1007/s11595-021-2395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-021-2395-9

Key words

Navigation