Log in

Preparation and spectral analysis of gold nanoparticles using magnetron sputtering and thermal annealing

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Gold (Au) nanoparticles were prepared on Au-film-coated K9 glass and silicon substrates by direct current (DC) magnetron sputtering and thermal annealing treatment. The effects of substrate material, annealing temperature, and time on morphologies of Au nanoparticles were investigated, and the formation mechanism of Au nanoparticles was discussed. The experimental results indicate that silicon substrate is more suitable for the formation of Au nanoparticles. On a silicon substrate, Au nanoparticles formed with good spherical shapes at temperature over 700 °C. It was also found by spectral analysis that the field enhancement factor of the island-shaped Au particles was smaller than that of the granular Au particles; the better the spherical shape as well as the smaller the size and spacing of Au particles, the higher the light absorption rate; the absorption peak had a red shift with increasing particle size and spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maryam M, Robert W. Intercalating Gold Nano-particles as Universal Labels for DNA Detection[J]. Small, 2007, 3(9): 1 491–1 495

    Article  Google Scholar 

  2. **arrón JM, Yáñez-Sedeño P, González-Cortés A. Gold Nanoparticle-Based Electrochemical Biosensors[J]. Electrochim. Acta, 2008, 53(19): 5 848–5 866

    Article  Google Scholar 

  3. Hu JD, Li W, Chen J, et al. Novel Plating Solution for Electroless Deposition of Gold Film onto Glass Surface[J]. Surf. Coat. Technol., 2008, 202(13): 2 922–2 926

    Article  Google Scholar 

  4. Yonezawa T, Onoue S, Kimizuka N. Formation of Uniform Fluorinated Gold Nanoparticles and Their Highly Ordered Hexagonally Packed Monolayer[J]. Langmir, 2001, 17(8): 2 291–2 293

    Article  Google Scholar 

  5. Chen FX, Xu GQ, Hor TS. A. Preparation and Assembly of Colloidal Gold Nanoparticles in CTAB-stabilized Reverse Microemulsion[J]. Mater. Lett., 2003, 57(21): 3 282–3 286

    Article  Google Scholar 

  6. Araki H, Fukuoka A, Sakamoto Y, et al. Template Synthesis and Characterization of Gold Nano-wires and -particles in Mesoporous Channels of FSM-16[J]. J. Mol. Catal. A, 2003, 199(1-2): 95–102

    Article  Google Scholar 

  7. Porta F, Speranza G, Krpetić Ž, et al. Gold Nanoparticles Capped by Peptides[J]. Mater. Sci. Eng. B, 2007, 140(3): 187–194

    Article  Google Scholar 

  8. Zhang R, Hummelgård M, Olin H. Simple and Efficient Gold Nanoparticles Deposition on Carbon Nanotubes with Controllable Particle Sizes[J]. Mater. Sci. Eng. B, 2009, 158(1–3): 48–52

    Article  Google Scholar 

  9. Hamada Y, Nishi M, Shimotsuma Y, et al. Sol-Gel Synthesis of Aunanoparticle Dispersed Bicontinuous Macroporous Siloxane Gel[J]. IOP Conf. Series: Mater. Sci. Eng., 2011, 18(2A): 032002~1–4

    Google Scholar 

  10. Misrar TK, Chen TS, Liu CY. Phase Transfer of Gold Nanoparticles from Aqueous to Organic Solution Containing Resorcinarene[J]. J. Colloid Interface Sci., 2006, 297(2): 584–588

    Article  Google Scholar 

  11. Zhao SY, Kang YS. Phase Transfer of Au Nanoparticles Using one Chemical Inducer: DDAB[J]. J. Nanopart. Res., 2011, 13(6): 2 399–2 406

    Article  Google Scholar 

  12. Van der Zande BMI, Bohmer MR, Fokkink LGJ, et al. Aqueous Gold Sols of Rod-shaped Particles[J]. J. Phys. Chem. B, 1997, 101(6): 852–854

    Article  Google Scholar 

  13. Dolati A, Imanieh I, Salehi F, et al. The Effect of Cysteine on Electrodeposition of Gold Nanoparticle[J]. Mater. Sci. Eng. B, 2011, 176(16): 1 307–1 312

    Article  Google Scholar 

  14. Mandal M, Ghosh SK, Kundu S, et al. UV Photoactivation for Size and Shape Controlled Synthesis and Coalescence of Gold Nanoparticles in Micelles[J]. Langmuir, 2002, 18(21): 7 792–7 797

    Article  Google Scholar 

  15. Mandal S, Selvakannan PR, Pasricha R, et al. Keggin Ions as UV-Switchable Reducing Agents in the Synthesis of Au Core-Ag Shell Nanoparticles[J]. J. Am. Chem. Soc., 2003, 125(28): 8 440–8 441

    Article  Google Scholar 

  16. Ayati A, Ahmadpour A, Bamoharram FF, et al. Optimization of the Experimental Conditions in Synthesis of Au NPs Using Preyssler Heteropolyacid Based on the Taguchi Robust Design[J]. Nano, 2012, 7(1): 1250002-1–10

    Article  Google Scholar 

  17. Sato S, Mori K, Ariyada O, et al. Synthesis of Nanoparticles of Noble Metals by Microwave-Induced Plasma in Liquid[J]. Surf. Coat. Technol., 2011, 206(5): 955–958

    Article  Google Scholar 

  18. Tu WX, Liu HF. Rapid Synthesis of Nanoscale Colloidal Metal Clusters by Microwave Irradiation[J]. J. Mater. Chem., 2000, 10(9): 2 207–2 211

    Article  Google Scholar 

  19. Pietrzak Ł, Jeszka JK. Gold Nanoparticles Grown on Multiwall Carbon Nanotubes[J]. Mater. Sci.-Poland, 2009, 27(3): 693–698

    Google Scholar 

  20. Ko SH, Choi Y, Hwang DJ, et al. Nanosecond Laser Ablation of Gold Nanoparticle Films[J]. Appl. Phys. Lett., 2006, 89(14): 141126~1–3

    Article  Google Scholar 

  21. Wender H, Andreazza ML, Correia RR, et al. Synthesis of Gold Nanoparticles by Laser Ablation of an Au Foil Inside and Outside Ionic Liquids[J]. Nanoscale, 2011, 3(3): 1 240–1 245

    Article  Google Scholar 

  22. Lee KC, Lin SJ, Lin CH, et al. Size Effect of Ag Nanoparticles on Surface Plasmon Resonance[J]. Surf. Coat. Technol., 2008, 202(22-23): 5 339–5 342

    Article  Google Scholar 

  23. Halperin WP. Quantum Size Effects in Metal Particles[J]. Rev. of Modern Phys., 1986, 58(3): 533–606

    Article  Google Scholar 

  24. Link S, El-Sayed MA. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles[J]. J. Phys. Chem. B, 1999, 103(21): 4 212–4 217

    Article  Google Scholar 

  25. Ebbesen TW, Lezec HJ, Ghaemil HF, et al. Extraordinary Optical Transmission Through Sub-wavelength Hole Arrays[J]. Nature, 1998, 39(21): 677–669

    Google Scholar 

  26. Wokaun A, Bergman JG, Heritage JP, et al. Surface Second-Harmonic Generation from Metal Island Films and Microlithographic Structures[J]. Phys. Rev. B, 1981, 24(2): 849–856

    Article  Google Scholar 

  27. Sun Y, **a Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles[J]. Science, 2002, 298(5601): 2 176–2 179

    Article  Google Scholar 

  28. Sepúlveda B, Angelomé PC, Lechuga LM, et al. LSPR-Based Nanobiosensors[J]. Nano Today, 2009, 4(3): 244–251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhou  (周明).

Additional information

Funded by the National Key Basic Research Development Program of China (973 Program, No. 2011CB013000), the Senior Talent Research Foundation of Jiangsu University (No. 13JDG045), the Open Research Fund Program of Jiangsu Provincial Key Laboratory of Center for Photon Manufacturing Science and Technology (No. GZ201307), and the Jiangsu Province Research Innovation Program of College Graduate (No. CXZZ13_0663)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Huang, L., Zhou, M. et al. Preparation and spectral analysis of gold nanoparticles using magnetron sputtering and thermal annealing. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 29, 651–655 (2014). https://doi.org/10.1007/s11595-014-0973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-014-0973-9

Key words

Navigation