Log in

Optoelectronic performance of Jatropha oil-derived poly(ethyl carbamate) gel polymer electrolyte as quasi-solid-state solution for photoelectrochemical cells

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A biopolymer derived from Jatropha oil-based poly(ethyl carbamate) (PUA) has been used as gel polymer electrolyte (GPE) in optoelectronic devices and photoelectrochemical cells (PEC) as photodiode devices. The quasi-solid-state photodiode device was characterized through photo current–voltage analysis, photogenerated charge carrier dynamic analysis, electrochemical impedance spectroscopy (EIS) analysis, and voltammetry analysis. Sample A2 biopolymer electrolyte (95 wt.% PUA, 5 wt.% LiI, 5 wt.% I2) revealed the highest ionic conductivity (2.34 ± 0.01) × 10−4 S cm−1 and power conversion efficiency (5.09 ± 0.23) %, along with the highest short-circuit current density (17.80 ± 0.41) mA cm−2, open-circuit voltage (0.52 ± 0.01) V, and fill factor (0.55 ± 0.04). respectively. Moreover, sample A2 biopolymer electrolyte featuring a triiodide ion diffusivity of 1.82 × 10−8 cm2 s−1 demonstrated electrochemical stability up to 2.1 V and remained functional for a duration of 2000 cycles. The charge dynamic mechanism in the PEC proved that sample A2 biopolymer electrolyte recorded lowest values of Rs, Rpt, Rct, and Rd of (18.60 ± 0.01) Ω, (1.20 ± 0.01) Ω, (10.0 ± 0.01) Ω, and (11.50 ± 0.01) Ω, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

Data is provided within the manuscript.

References

  1. Murad AR, Iraqi A, Aziz SB, Abdullah SN, Brza MA (2020) Conducting polymers for optoelectronic devices and organic solar cells: a review. Polymers 12(11):2627. https://doi.org/10.3390/polym12112627

    Article  CAS  Google Scholar 

  2. Mathies F, List-Kratochvil EJW, Unger EL (2020) Advances in inkjet-printed metal halide perovskite photovoltaic and optoelectronic devices. Energy Technol 8:1900991. https://doi.org/10.1002/ente.201900991

    Article  CAS  Google Scholar 

  3. Zhao P, Su J, Lin Z et al (2020) The crystal anisotropy effect of MAPbI3 perovskite on optoelectronic devices. Mater Today Energy 17:100481. https://doi.org/10.1016/j.mtener.2020.100481

    Article  Google Scholar 

  4. Pham HD, **anqiang L, Li W et al (2019) Organic interfacial materials for perovskite-based optoelectronic devices. Energy Environ Sci 12:1177–1209. https://doi.org/10.1039/C8EE02744G

    Article  CAS  Google Scholar 

  5. Abate A, Correa-Baena J-P, Saliba M et al (2018) Perovskite solar cells: from the laboratory to the assembly line. Chem (Weinheim an der Bergstrasse, Germany) 24:3083–3100. https://doi.org/10.1002/chem.201704507

    Article  CAS  Google Scholar 

  6. Dayan O, GencerImer A, Tercan M et al (2021) Dye sensitized solar cell-based optoelectronic device using novel [Ru(L1)(L2)(NCS)2] complex. J Mol Struct 1238:130464. https://doi.org/10.1016/j.molstruc.2021.130464

    Article  CAS  Google Scholar 

  7. Al-Sabana O, Abdellatif SO (2022) Optoelectronic devices informatics: optimizing DSSC performance using random-forest machine learning algorithm. Optoelectron Lett 18:148–151. https://doi.org/10.1007/s11801-022-1115-9

    Article  Google Scholar 

  8. Su’ait MS, Rahman MYA, Ahmad A (2015) Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Solar Energy 115:452–470. https://doi.org/10.1016/j.solener.2015.02.043

    Article  CAS  Google Scholar 

  9. **e B, Chen Z, Ying L et al (2020) Near-infrared organic photoelectric materials for light-harvesting systems: organic photovoltaics and organic photodiodes. InfoMat 2:57–91. https://doi.org/10.1002/inf2.12063

    Article  CAS  Google Scholar 

  10. Li Q, Li Z (2020) Molecular packing: another key point for the performance of organic and polymeric optoelectronic materials. Acc Chem Res 53:962–973. https://doi.org/10.1021/acs.accounts.0c00060

    Article  CAS  PubMed  Google Scholar 

  11. Pode R (2020) Organic light emitting diode devices: an energy efficient solid state lighting for applications. Renew Sustain Energy Rev 133:110043. https://doi.org/10.1016/j.rser.2020.110043

    Article  Google Scholar 

  12. Su R, Park SH, Ouyang X et al (2023) 3D-printed flexible organic light-emitting diode displays. Sci Adv 8:eabl8798. https://doi.org/10.1126/sciadv.abl8798

    Article  CAS  Google Scholar 

  13. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  14. Yahya AK, Sasongko SB (2019) Characterization of dye-sensitized solar cell (DSSC) with acid treatment by HNO3 in mangosteen peel dye. AIP Conf Proc 2202(1):020127

    Article  Google Scholar 

  15. Mahmood A (2015) Recent research progress on quasi-solid-state electrolytes for dye-sensitized solar cells. J Energy Chem 24(6):686–692. https://doi.org/10.1016/j.jechem.2015.10.018

    Article  Google Scholar 

  16. Kamarulzaman UA, Rahman MY, Su’ait MS, Umar AA (2023) Improvement of the performance of dye-sensitized solar cells employing nickelpalladium alloy-reduced graphene oxide counter electrode: Influence of palladium content. Optik 276:170658

    Article  CAS  Google Scholar 

  17. Arof AK, Noor IM, Buraidah MH et al (2017) Polyacrylonitrile gel polymer electrolyte based dye sensitized solar cells for a prototype solar panel. Electrochim Acta 251:223–234. https://doi.org/10.1016/j.electacta.2017.08.129

    Article  CAS  Google Scholar 

  18. Mahalingam S, Nugroho A, Floresyona D, Lau KS, Manap A, Chin Hua Chia NA (2022) Bio and non-bio materials-based quasi-solid state electrolytes in DSSC: a review. Int J Energy Res 46:5399–5422

    Article  CAS  Google Scholar 

  19. Yusuf SNF, Azzahari AD, Selvanathan V et al (2017) Improvement of N-phthaloylchitosan based gel polymer electrolyte in dye-sensitized solar cells using a binary salt system. Carbohyd Polym 157:938–944. https://doi.org/10.1016/j.carbpol.2016.10.032

    Article  CAS  Google Scholar 

  20. Yee LP, Farhana NK, Omar FS et al (2019) Enhancing efficiency of dye sensitized solar cells based on poly(propylene) carbonate polymer gel electrolytes incorporating double salts. Ionics 26(1):493–502. https://doi.org/10.1007/s11581-019-03191-2

    Article  CAS  Google Scholar 

  21. Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM (2018) A conceptual review on polymer electrolytes and ion transport models. J Sci: Adv Mater Dev 3(1):1–17

    Google Scholar 

  22. Careem MA, Aziz MF, Buraidah MH (2017) Boosting efficiencies of gel polymer electrolyte based dye sensitized solar cells using mixed cations. Mater Today Proc 4(4):5092–5099

    Article  Google Scholar 

  23. Nakade S, Kanzaki T, Kubo W et al (2005) Role of electrolytes on charge recombination in dye-sensitized TiO 2 solar cell (1): the case of solar cells using the I - /I 3 - redox couple. J Phys Chem B 109:3480–3487. https://doi.org/10.1021/jp0460036

    Article  CAS  PubMed  Google Scholar 

  24. Chai KL, Noor IM, Aung MM et al (2020) Non-edible oil based polyurethane acrylate with tetrabutylammonium iodide gel polymer electrolytes for dye-sensitized solar cells. Sol Energy 208:457–468. https://doi.org/10.1016/j.solener.2020.08.020

    Article  CAS  Google Scholar 

  25. Aziz MF, Buraidah MH, Careem MA, Arof AK (2015) PVA based gel polymer electrolytes with mixed iodide salts (K+I- and Bu4N+I-) for dye-sensitized solar cell application. Electrochim Acta 182:217–223. https://doi.org/10.1016/j.electacta.2015.09.035

  26. Noor IM, Arof AK (2019) Perovskite solar cell using binary iodide gel polymer electrolytes. In: 2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, pp 1–1. https://doi.org/10.1109/ICTON.2019.8840142

  27. Su’ait MS, Syed Mahadzir PIZ, Badri KH, AA, (2022) Effects of isocyanate-to-polyols (NCO/OH) ratio on bio-based polyurethane film from palm kernel oil based monoester polyols (PKO-p) for polymer electrolytes application. Mater Sci (Medziagotyra) 28:322–332

    Google Scholar 

  28. Amri MR, Al-Edrus SSO, Guan CT et al (2021) Jatropha oil as a substituent for palm oil in biobased polyurethane. Int J Polym Sci 2021:6655936. https://doi.org/10.1155/2021/6655936

    Article  CAS  Google Scholar 

  29. Ahmed WA, Salimon J (2009) Phorbol ester as toxic constituents of tropical Jatropha curcas seed oil. Eur J Sci Res 31:429–436. https://doi.org/10.1038/srep09259

    Article  CAS  Google Scholar 

  30. Kai Ling C, Aung MM, Rayung M et al (2019) Performance of ionic transport properties in vegetable oil-based polyurethane acrylate gel polymer electrolyte. ACS Omega 4:2554–2564. https://doi.org/10.1021/acsomega.8b02100

    Article  CAS  Google Scholar 

  31. Lee TK, Zaini NFM, Mobarak NN et al (2019) PEO based polymer electrolyte comprised of epoxidized natural rubber material (ENR50) for Li-ion polymer battery application. Electrochim Acta 316:283–291. https://doi.org/10.1016/J.ELECTACTA.2019.05.143

    Article  CAS  Google Scholar 

  32. Simone G, Dyson MJ, Weijtens CHL et al (2020) On the origin of dark current in organic photodiodes. Adv Optic Mater 8:1901568. https://doi.org/10.1002/adom.201901568

    Article  CAS  Google Scholar 

  33. Fallahpour AH, Kienitz S, Lugli P (2017) Origin of dark current and detailed description of organic photodiode operation under different illumination intensities. IEEE Trans Electron Devices 64:2649–2654. https://doi.org/10.1109/TED.2017.2696478

    Article  CAS  Google Scholar 

  34. Gledhill SE, Gregg BA, Scott B (2005) Organic and nano-structured composite photovoltaics: an overview. J Mater Res 20:3167–3179. https://doi.org/10.1557/jmr.2005.0407

    Article  CAS  Google Scholar 

  35. Zhou T, Zhang H, Zhang X et al (2020) BiOI/Bi2O2CO3 two-dimensional heteronanostructures with boosting charge carrier separation behavior and enhanced visible-light photocatalytic performance. J Phys Chem C 124:20294–20308. https://doi.org/10.1021/acs.jpcc.0c06833

    Article  CAS  Google Scholar 

  36. Suresh R, Ponnuswamy V, Sankar C et al (2016) IDC golf-ball structured thin films: preparation{,} characterization and photodiode properties. RSC Adv 6:53967–53980. https://doi.org/10.1039/C6RA07716A

    Article  CAS  Google Scholar 

  37. Mozaffari SA, Saeidi M, Rahmanian R (2015) Photoelectric characterization of fabricated dye-sensitized solar cell using dye extracted from red Siahkooti fruit as natural sensitizer. Spectrochimica Acta - Part A: Mol Biomol Spectros 142:226–231. https://doi.org/10.1016/j.saa.2015.02.003

    Article  CAS  Google Scholar 

  38. Shah S, Noor IM, Pitawala J et al (2017) Plasmonic effects of quantum size metal nanoparticles on dye-sensitized solar cell. Optic Mater Express 7(6):2069–2083. https://doi.org/10.1364/ome.7.002069

    Article  CAS  Google Scholar 

  39. Chou HT, Hsu HC, Lien CH, Chen ST (2015) The effect of various concentrations of PVDF-HFP polymer gel electrolyte for dye-sensitized solar cell. Microelectron Reliab. 55(11):2174–2177

    Article  CAS  Google Scholar 

  40. Wang C, Wang L, Shi Y et al (2013) Printable electrolytes for highly efficient quasi-solid-state dye-sensitized solar cells. Electrochim Acta 91:302–306. https://doi.org/10.1016/j.electacta.2012.12.096

    Article  CAS  Google Scholar 

  41. Chowdhury FI, Buraidah MH, Arof AK et al (2020) Impact of tetrabutylammonium, iodide and triiodide ions conductivity in polyacrylonitrile based electrolyte on DSSC performance. Sol Energy 196:379–388. https://doi.org/10.1016/j.solener.2019.12.033

    Article  CAS  Google Scholar 

  42. Teo LP, Tiong TS, Buraidah MH, Arof AK (2018) Effect of lithium iodide on the performance of dye sensitized solar cells (DSSC) using poly(ethylene oxide) (PEO)/poly(vinyl alcohol) (PVA) based gel polymer electrolytes. Opt Mater 85:531–537. https://doi.org/10.1016/j.optmat.2018.09.026

    Article  CAS  Google Scholar 

  43. Wu J, Lan Z, Hao S et al (2008) Progress on the electrolytes for dye-sensitized solar cells. Pure Appl Chem 80(11):2241–2258

    Article  CAS  Google Scholar 

  44. Lim SP, Pandikumar A, Lim H et al (2015) Boosting photovoltaic performance of dye-sensitized solar cells using silver nanoparticle-decorated N, S-Co-doped-TiO2 photoanode. Sci Rep 5:11922. https://doi.org/10.1038/srep11922

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chang S, Wong KY, **ao X, Chen T (2014) Effective improvement of the photovoltaic performance of black dye sensitized quasi-solid-state solar cells. RSC Adv 4:31759–31763. https://doi.org/10.1039/C4RA04017A

    Article  CAS  Google Scholar 

  46. Fakharuddin A (2014) Probing electron lifetime and recombination dynamics in large area dye-sensitized solar cells by electrochemical impedance spectroscopy. Adv Mater Res 295:553–558. https://doi.org/10.4028/www.scientific.net/AMR.925.553

    Article  CAS  Google Scholar 

  47. Aziz SB, Hamsan MH, Abdullah RM, Kadir MFZ (2019) A promising polymer blend electrolytes based on chitosan: methyl cellulose for EDLC application with high specific capacitance and energy density. Molecules 24(13):2503. https://doi.org/10.3390/molecules24132503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aziz SB (2018) The mixed contribution of ionic and electronic carriers to conductivity in chitosan based solid electrolytes mediated by CuNt salt. J Inorg Organomet Polym Mater 28(5):1942–1952. https://doi.org/10.1007/s10904-018-0862-3

    Article  CAS  Google Scholar 

  49. Aziz SB, Hamsan MH, Kadir MFZ et al (2019) Development of polymer blend electrolyte membranes based on chitosan: dextran with high ion transport properties for EDLC application. Int J Mol Sci 20(13):3369. https://doi.org/10.3390/ijms20133369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buraidah MH, Teo LP, Au Yong CM et al (2016) Performance of polymer electrolyte based on chitosan blended with poly(ethylene oxide) for plasmonic dye-sensitized solar cell. Opt Mater 57:202–211. https://doi.org/10.1016/j.optmat.2016.04.028

    Article  CAS  Google Scholar 

  51. Careem MA, Noor ISM, Arof AK (2020) Impedance spectroscopy in polymer electrolyte characterization. Characterization Techniques and Energy Applications, Polymer Electrolytes, pp 23–64

    Google Scholar 

  52. Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16(5):1856–1867. https://doi.org/10.1039/c3cp53830c

    Article  CAS  PubMed  Google Scholar 

  53. Dissanayake MAKL, Thotawatthage CA, Senadeera GKR et al (2012) Efficiency enhancement by mixed cation effect in dye-sensitized solar cells with PAN based gel polymer electrolyte. J Photochem Photobiol, A 246:29–35. https://doi.org/10.1016/j.jphotochem.2012.06.023

    Article  CAS  Google Scholar 

  54. Whba RAG, TianKhoon L, Su’ait MS, et al (2020) Influence of binary lithium salts on 49% poly(methyl methacrylate) grafted natural rubber based solid polymer electrolytes. Arab J Chem 13:3351–3361. https://doi.org/10.1016/j.arabjc.2018.11.009

    Article  CAS  Google Scholar 

  55. Schantz S, Torell LM, Stevens JR (1991) Ion pairing effects in poly(propylene glycol)-salt complexes as a function of molecular weight and temperature: a Raman scattering study using NaCF3SO3and LiCIO4. J Chem Phys 94(10):6862–6867. https://doi.org/10.1063/1.460265

    Article  CAS  Google Scholar 

  56. Wen TC, Luo SS, Yang CH (2000) Ionic conductivity of polymer electrolytes derived from various diisocyanate-based waterborne polyurethanes. Polymer 41(18):6755–6764. https://doi.org/10.1016/S0032-3861(00)00023-9

    Article  CAS  Google Scholar 

  57. Hemalatha R, Alagar M, Selvasekarapandian S et al (2019) Preparation and characterization of proton-conducting polymer electrolyte based on PVA, amino acid proline, and NH 4 Cl and its applications to electrochemical devices. Ionics 25(1):141–154. https://doi.org/10.1007/s11581-018-2564-9

    Article  CAS  Google Scholar 

  58. Shamsuddin L, Noor IM, Albinsson I et al (2017) Perovskite solar cells using polymer electrolytes. Mol Cryst Liq Cryst 655:181–194. https://doi.org/10.1080/15421406.2017.1362889

    Article  CAS  Google Scholar 

  59. Noor IS, Majid SR, Arof AK (2013) Poly(vinyl alcohol)-LiBOB complexes for lithium-air cells. Electrochim Acta 102:149–160. https://doi.org/10.1016/j.electacta.2013.04.010

    Article  CAS  Google Scholar 

  60. Wyss P, Moehl T, Zakeeruddin SM, Grätzel M (2012) Influence of cations of the electrolyte on the performance and stability of dye sensitized solar cells. J Mater Chem. https://doi.org/10.1039/c2jm34706g

    Article  Google Scholar 

  61. Hauch A, Georg A (2001) Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim Acta. https://doi.org/10.1016/S0013-4686(01)00540-0

    Article  Google Scholar 

  62. Slane S, Salomon M (1995) Composite gel electrolyte for rechargeable lithium batteries. J Power Sourc. https://doi.org/10.1016/0378-7753(94)02148-V

    Article  Google Scholar 

Download references

Acknowledgements

The authors express appreciation to Universiti Putra Malaysia for allowing this research to be carried out under IPS Grant (GP-IPS/2019/9682100) and Center for Ionic University of Malaya (CIUM) for the facilities provided. The authors also would like to acknowledge Universiti Kebangsaan Malaysia (UKM) for the continues support through Dana Impak Perdana 2.0 Grant Scheme, specifically grant DIP-2022-017.

Author information

Authors and Affiliations

Authors

Contributions

K.L. Chai wrote the manuscript, I.M. Noor made substantial contributions to the design of the work (photogenerated charge carrier dynamic, EIS, CV and LSV), TianKhoon Lee, M.S.Su'ait and A.Ahmad reviewed the manuscript.

Corresponding author

Correspondence to A. Ahmad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, K.L., Noor, I.M., Lee, T.K. et al. Optoelectronic performance of Jatropha oil-derived poly(ethyl carbamate) gel polymer electrolyte as quasi-solid-state solution for photoelectrochemical cells. Ionics (2024). https://doi.org/10.1007/s11581-024-05682-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05682-3

Keywords

Navigation