Log in

Novel synthesis of CoWO4 supported on 1D-MWCNT nanocomposites enhancing dielectric properties for supercapacitor electrodes

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The pursuit for high-performance supercapacitor electrodes has received considerable interest, fueled by the urgent need for reliable energy storage solutions in the face of the impending exhaustion of fossil fuels and the necessary transition towards renewable resources. Herein, CoWO4/MWCNT nanocomposite (NCs) are grown on Ni-foam substrate via a facile hydrothermal process. The CoWO4 nanoparticles (NPs) anchored with 1D-MWCNT on the Ni-foam substrate were confirmed through XRD, FT-IR, and SEM analysis. The XRD analysis showcased CoWO4 NP size of about 54 nm; also, the SEM findings demonstrated 20.6 ± 4 nm-sized aggregated CoWO4 NPs. Interestingly, the CoWO4/MWCNT NCs exhibited a high specific capacity of 115 C g−1 at 1 Ag−1, with 98% retention even after 5000 cycles at 5 A g−1. Notably, the dielectric properties were studied, showing a dielectric constant of 73.56 for CoWO4 and 82.24 for CoWO4/MWCNT at 1 MHz, suggesting potential for ferroelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data and code availability

The data that has been used is confidential.

References

  1. Mashkoor F, Shoeb M, Mashkoor R et al (2023) Synergistic effects of tungstate trioxide hemihydrate decorated reduced graphene oxide for the adsorption of heavy metals and dyes and postliminary application in supercapacitor device. J Clean Prod 418:138067

    Article  CAS  Google Scholar 

  2. Gao B, Hu R, Feng Z et al (2024) Synthesis and applications of self-supported porous polymetallic tungstates heterostructure electrodes for high-performance asymmetric supercapacitors. J Alloys Compd 979:173562

    Article  Google Scholar 

  3. Oliveira YL, Gouveia AF, Costa MJS et al (2022) Investigation of electronic structure, morphological features, optical, colorimetric, and supercapacitor electrode properties of CoWO4 crystals. Mater Sci Energy Technol 5:125–144

    CAS  Google Scholar 

  4. Chen F, Ji Y, Ren F et al (2021) Three-dimensional hierarchical core-shell CuCo2O4@ Co (OH) 2 nanoflakes as high-performance electrode materials for flexible supercapacitors. J Colloid Interface Sci 586:797–806

    Article  CAS  PubMed  Google Scholar 

  5. Dalenjan FA, Bagheri-Mohagheghi MM, Shirpay A (2022) The study of structural, optical and electrochromic properties of WO3: Co: Ni thin films deposited by spray pyrolysis. Opt Quantum Electron 54:711

    Article  CAS  Google Scholar 

  6. Thilagavathi T, Venugopal D, Marnadu R et al (2021) WO3/CoWO4 nanocomposite synthesis using a facile co-precipitation method for enhanced photocatalytic applications. J Phys Chem Solids 154:110066

    Article  CAS  Google Scholar 

  7. Najib S, Bakan F, Abdullayeva N et al (2020) Tailoring morphology to control defect structures in ZnO electrodes for high-performance supercapacitor devices. Nanoscale 12:16162–16172

    Article  CAS  PubMed  Google Scholar 

  8. Wang T, Liu J, Ma Y et al (2021) P-N heterojunction NiO/ZnO electrode with high electrochemical performance for supercapacitor applications. Electrochim Acta 392:138976

    Article  CAS  Google Scholar 

  9. Taslim R, Apriwandi A, Taer E (2022) Novel Moringa oleifera leaves 3D porous carbon-based electrode material as a high-performance EDLC supercapacitor. ACS Omega 7:36489–36502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun F, Wu D, Gao J et al (2020) Graphitic porous carbon with multiple structural merits for high-performance organic supercapacitor. J Power Sources 477:228759

    Article  CAS  Google Scholar 

  11. Kushwaha V, Gupta A, Choudhary RB et al (2023) Nanocrystalline β-NiS: a redox-mediated electrode in aqueous electrolyte for pseudocapacitor/supercapacitor applications. Phys Chem Chem Phys 25:555–569

    Article  CAS  Google Scholar 

  12. Pal M, Subhedar KM (2023) CNT yarn based solid state linear supercapacitor with multi-featured capabilities for wearable and implantable devices. Energy Storage Mater 57:136–170

    Article  Google Scholar 

  13. Li S, Zhang Q, Liu L et al (2023) Ultra-stable sandwich shaped flexible MXene/CNT@ Ni films for high performance supercapacitor. J Alloys Compd 941:168963

    Article  CAS  Google Scholar 

  14. Anwer AH, Ansari MZ, Mashkoor F et al (2023) Synergistic effect of carbon nanotube and tri-metallic MOF nanoarchitecture for electrochemical high-performance asymmetric supercapacitor applications and their charge storage mechanism. J Alloys Compd 955:170038

    Article  CAS  Google Scholar 

  15. Huang N, Sun Y, Liu S et al (2023) Microwave-assisted rational designed CNT-Mn3O4/CoWO4 hybrid nanocomposites for high performance battery-supercapacitor hybrid device. Small 19:2300696

    Article  CAS  Google Scholar 

  16. ur Rehman MN, Munawar T, Nadeem MS, et al (2021) Facile synthesis and characterization of conducting polymer-metal oxide based core-shell PANI-Pr2O–NiO–Co3O4 nanocomposite: as electrode material for supercapacitor. Ceram Int 47:18497–18509

    Article  Google Scholar 

  17. Ansarinejad H, Shabani-Nooshabadi M, Ghoreishi SM (2023) Introducing of WO3@ NiCo2O4/rGO ternary nanocomposites as active material for high-performance supercapacitor applications. J Energy Storage 74:109256

    Article  Google Scholar 

  18. Anitha T, Reddy AE, Vinodh R et al (2020) Preparation and characterization of CoWO4/CoMn2O4 nanoflakes composites on Ni foam for electrochemical supercapacitor applications. J Energy Storage 30:101483

    Article  Google Scholar 

  19. Bhagwan J, Han JI (2023) Multi-walled carbon nanotubes decorated ZnMoO4 nanoflakes and their supercapacitive property. Diam Relat Mater 140:110551

    Article  CAS  Google Scholar 

  20. Narale DK, Kumbhar PD, Bhosale RR et al (2024) Rational design of NiMoO4@ CoMoO4 core-shell microrods a promising binder-free positive electrode for high-performance asymmetric supercapacitor application. J Power Sources 601:234291

    Article  CAS  Google Scholar 

  21. Fahad HM, Shaheen F, Ahmad R et al (2024) A 3D hydrangea-like NiMoO4/rGO/PANI hybrid composite for high performance asymmetric supercapacitor. Electrochim Acta 477:143756

    Article  CAS  Google Scholar 

  22. Ammasi A, Munusamy AP, Shkir M et al (2023) Synthesis and electrochemical performance of CoWO4 and CoWO4/MWCNT nanocomposites for highly efficient supercapacitor applications. Diam Relat Mater 139:110352

    Article  CAS  Google Scholar 

  23. Nguyen AQK, Ahn Y-Y, Shin G et al (2023) Degradation of organic compounds through both radical and nonradical activation of peroxymonosulfate using CoWO4 catalysts. Appl Catal B Environ 324:122266

    Article  CAS  Google Scholar 

  24. Suresh Kumar N, Padma Suvarna R, Chandra Babu Naidu K (2018) Structural and ferroelectric properties of microwave heated lead cobalt titanate nanoparticles synthesized by sol–gel technique. J Mater Sci Mater Electron 29:4738–4742. https://doi.org/10.1007/s10854-017-8429-6

    Article  CAS  Google Scholar 

  25. Sagar TV, Rao TS, Naidu KCB (2021) AC-electrical conductivity, magnetic susceptibility, dielectric modulus and impedance studies of sol-gel processed nano-NiMgZn ferrites. Mater Chem Phys 258:123902. https://doi.org/10.1016/j.matchemphys.2020.123902

    Article  CAS  Google Scholar 

  26. Alomairy S, Al-Buriahi MS, Wahab EAA et al (2021) Synthesis, FTIR, and neutron/charged particle transmission properties of Pb3O4–SiO2–ZnO–WO3 glass system. Ceram Int 47:17322–17330

    Article  CAS  Google Scholar 

  27. Karthikeyan S, Selvapandiyan M, Sasikumar P et al (2022) Investigation on the properties of vanadium do** WO3 nanostructures by hydrothermal method. Mater Sci Energy Technol 5:411–415

    CAS  Google Scholar 

  28. Purushothaman KK, Muralidharan G, Vijayakumar S (2021) Sol-gel coated WO3 thin films based complementary electrochromic smart windows. Mater Lett 296:129881

    Article  CAS  Google Scholar 

  29. Francis DV, Aiswarya T, Gokhale T (2022) Optimization of the incubation parameters for biogenic synthesis of WO3 nanoparticles using Taguchi method. Heliyon 8

  30. Zhu Y, Zamani M, Xu G et al (2021) A comprehensive experimental investigation of dynamic viscosity of MWCNT-WO3/water-ethylene glycol antifreeze hybrid nanofluid. J Mol Liq 333:115986

    Article  CAS  Google Scholar 

  31. Kumar NS, Suvarna RP, Naidu KCB (2020) Negative dielectric behavior in tetragonal La0.8Co0.2-xEuxTiO3 (x = 0.01–0.04) nanorods. Mater Charact 166:110425. https://doi.org/10.1016/j.matchar.2020.110425

    Article  CAS  Google Scholar 

  32. Mallikarjuna A, Ramesh S, Kumar NS et al (2020) Structural transformation and high negative dielectric constant behavior in (1–x) (Al0·2La0·8TiO3) + (x) (BiFeO3) (x = 0.2–0.8) nanocomposites. Phys E Low-Dimensional Syst Nanostructures 122:114204. https://doi.org/10.1016/j.physe.2020.114204

    Article  CAS  Google Scholar 

  33. Naidu KCB, Kumar NS, Banerjee P, Reddy BVS (2021) A review on the origin of nanofibers/nanorods structures and applications. J Mater Sci Mater Med 32. https://doi.org/10.1007/s10856-021-06541-7

  34. Dastagiri S, Lakshmaiah MV, Chandra Babu Naidu K (2020) Defect dipole polarization mechanism in low-dimensional europium substituted Al0.8La0.2TiO3 nanostructures. Phys E Low-Dimensional Syst Nanostructures 120:114058. https://doi.org/10.1016/j.physe.2020.114058

    Article  CAS  Google Scholar 

  35. Venkata Shiva Reddy B, Srinivas K, Suresh Kumar N, et al (2020) Nanorods like microstructure, photocatalytic activity and ac-electrical properties of (1-x) (Al0.2La0.8TiO3) + (x) (BaTiO3) (x = 0.2, 0.4, 0.6 & 0.8) nanocomposites. Chem Phys Lett 752. https://doi.org/10.1016/j.cplett.2020.137552

  36. Shiprath K, Manjunatha H, Venkata Nadh R et al (2021) Synthesis and electrochemical characterization of NaCoO2 as cathode material in 2 M NaOH aqueous electrolyte. ChemistrySelect 6:1874–1881. https://doi.org/10.1002/slct.202100294

    Article  CAS  Google Scholar 

  37. Velmurugan R, Aishwarya M, Balamurugan K et al (2022) Influencing in situ tuned nanostructures of pulsed laser ablated Co3O4 & WO3 thin film electrodes for binder free flexible operando hybrid supercapacitor devices. Electrochim Acta 419:140371

    Article  CAS  Google Scholar 

  38. Chinnaiah K, Kannan K, Palko N et al (2024) Exploring the potential of Withania somnifera-mediated Ag/Mn3O4 nanocomposites as electrode material for high-performance supercapattery device. J Taiwan Inst Chem Eng 157:105441

    Article  CAS  Google Scholar 

  39. Shiprath K, Manjunatha H, Babu Naidu KC et al (2020) Na3MnPO4CO3 as cathode for aqueous sodium ion batteries: synthesis and electrochemical characterization. Mater Chem Phys 248:122952. https://doi.org/10.1016/j.matchemphys.2020.122952

    Article  CAS  Google Scholar 

  40. Wang W, Li F, Zhang N et al (2022) Self-assembled Co3O4@ WO3 hollow microspheres with oxygen vacancy defects for fast and selective detection of toluene. Sensors Actuators B Chem 351:130931

    Article  CAS  Google Scholar 

  41. Chinnaiah K, Kannan K, Krishnamoorthi R et al (2024) Nanostructured Ag/NiO composites for supercapacitor and antibacterial applications, and in-silico theoretical investigation. J Phys Chem Solids 184:111730

    Article  CAS  Google Scholar 

  42. Chinnaiah K, Krishnamoorthi R, Kannan K et al (2022) Ag nanoparticles synthesized by Datura metel L. Leaf extract and their charge density distribution, electrochemical and biological performance. Chem Phys Lett 807:140083

    Article  CAS  Google Scholar 

  43. Nagaraj G, Chinnaiah K, Kannan K, Gurushankar K (2022) Nano-sized neem plant particles as an electrode for electrochemical storage applications. Ionics (Kiel) 28:3787–3797

    Article  CAS  Google Scholar 

  44. Kenyota N, Jarernboon W, Laokul P (2023) Effect of surface modification by KOH activation on the electrochemical performance of Co3O4 nanoparticles. Mater Sci Eng B 290:116293

    Article  CAS  Google Scholar 

  45. Chinnaiah K, Kannan K, Palko N et al (2024) Bioengineered Ag/NiO nanocomposites as advanced battery-supercapacitor electrodes for highly efficient symmetric hybrid devices. Ionics (Kiel) 30:1691–1707

    Article  CAS  Google Scholar 

  46. Chinnaiah K, Kannan K, Krishnamoorthy R, Gurushankar K (2023) Datura metel L. leaf extract mediated sodium alginate polymer membrane for supercapacitor and food packaging applications. Int J Biol Macromol 242:125112

    Article  CAS  PubMed  Google Scholar 

  47. Chandra Babu Naidu K, Wuppulluri M (2018) Ceramic nanoparticle synthesis at lower temperatures for LTCC and MMIC technologies. IEEE Trans Magn 54:1–8. https://doi.org/10.1109/TMAG.2018.2855663

    Article  Google Scholar 

  48. Abdallah AM, Awad R (2020) Study of the structural and physical properties of Co3O4 nanoparticles synthesized by co-precipitation method. J Supercond Nov Magn 33:1395–1404

    Article  CAS  Google Scholar 

  49. Chinnaiah K, Theivashanthi T, Kannan K et al (2022) Electrical and electrochemical characteristics of Withania somnifera leaf extract incorporation sodium alginate polymer film for energy storage applications. J Inorg Organomet Polym Mater 32:583–595. https://doi.org/10.1007/s10904-021-02139-2

    Article  CAS  Google Scholar 

  50. **e X, Yang C, Qi X et al (2019) Constructing polymeric interlayer with dual effects toward high dielectric constant and low dielectric loss. Chem Eng J 366:378–389

    Article  CAS  Google Scholar 

  51. Liu M, Wu H, Wu Y et al (2022) The weakly negative permittivity with low-frequency-dispersion behavior in percolative carbon nanotubes/epoxy nanocomposites at radio-frequency range. Adv Compos Hybrid Mater 5:2021–2030

    Article  CAS  Google Scholar 

  52. Chen J, Zeng M, Feng Z et al (2019) Design and preparation of benzoxazine resin with high-frequency low dielectric constants and ultralow dielectric losses. ACS Appl Polym Mater 1:625–630

    Article  CAS  Google Scholar 

  53. Lakshmanan A, Surendran P, Priya SS et al (2024) Investigations on structural, dielectric, and third-order nonlinear optical studies of Ni0. 5Zn0. 5Fe2O4 nanoparticles by microwave combustion method with different fuels (glycine, urea and citric acid). Mater Lett 360:135973

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgements are not applicable.

Funding

Funding information is not available.

Author information

Authors and Affiliations

Authors

Contributions

V. Saravanakumar: investigation, writing—original draft; V. J. Vijayalakshmi: writing—review and editing, supervision. S. Seenivasan: conceptualization, data curation. Dhinesh Subramanian: data analysis, software investigation.

Corresponding author

Correspondence to V. J. Vijayalakshmi.

Ethics declarations

Ethical approval

Ethical approval is not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanakumar, V., Vijayalakshmi, V.J., Seenivasan, S. et al. Novel synthesis of CoWO4 supported on 1D-MWCNT nanocomposites enhancing dielectric properties for supercapacitor electrodes. Ionics (2024). https://doi.org/10.1007/s11581-024-05673-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05673-4

Keywords

Navigation