Log in

2D g-GaN as interphase anode layer in Mg battery for capturing passivation species (MgO, Mg(OH)2, MgCO3) — A first-principles study

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The first principles study has been carried out to analyse the performance of the 2D graphene-gallium nitride (g-GaN) as interphase material at the magnesium electrode (g-GaN@Mg) for capturing the passivation species such as magnesium oxide (MgO), magnesium hydroxide (Mg(OH)2), and magnesium carbonate (MgCO3) in rechargeable magnesium batteries (RMB). The current work shows that the calculated interphase binding energy (Eb) between the Mg and g-GaN layers are strong. Ab initio molecular dynamics (AIMD) simulation confirms the thermal stability of the g-GaN@Mg at 500 K. The excellent anodic properties of the g-GaN@Mg surface has been confirmed from adsorption energy and diffusivity of single Mg atom values, − 2.64 eV and 10−3 cm2/s, respectively. Interaction of passivation species MgO, (Mg(OH)2) and (MgCO3) with g-GaN@Mg surface demonstrates a weakening of the Mg–O and Mg–C bond distance. The findings mentioned above suggest that the g-GaN@Mg surface is a potential protective layer against the passivation species for Mg batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  2. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264

    Article  CAS  Google Scholar 

  3. Schmuch R, Wagner R, Hörpel G, Placke T, Winter M (2018) Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy 3(4):267–278

    Article  CAS  Google Scholar 

  4. Li M, Lu J, Chen Z, Amine K (2018) 30 Years of lithium-ion batteries. Adv Mater 30(33):1800561

    Article  Google Scholar 

  5. Li W, Erickson EM, Manthiram A (2020) High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat Energy 5(1):26–34

    Article  CAS  Google Scholar 

  6. Shen X, Liu H, Cheng X-B, Yan C, Huang J-Q (2018) Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes. Energy Storage Materials 12:161–175

    Article  Google Scholar 

  7. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537

    Article  CAS  Google Scholar 

  8. Zubi G, Dufo-López R, Carvalho M, Pasaoglu G (2018) The lithium-ion battery: state of the art and future perspectives. Renew Sustain Energy Rev 89:292–308

    Article  Google Scholar 

  9. Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6(8):2265–2279

    Article  CAS  Google Scholar 

  10. Guo Z, Zhao S, Li T, Su D, Guo S, Wang G (2020) Recent advances in rechargeable magnesium-based batteries for high-efficiency energy storage. Adv Energy Mater 10(21):1903591

    Article  CAS  Google Scholar 

  11. Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114(23):11683–11720

    Article  CAS  PubMed  Google Scholar 

  12. Mohtadi R, Tutusaus O, Arthur TS, Zhao-Karger Z, Fichtner M (2021) The metamorphosis of rechargeable magnesium batteries. Joule 5(3):581–617

    Article  CAS  Google Scholar 

  13. Liu F, Cao G, Ban J, Lei H, Zhang Y, Shao G, Zhou A, zhenFan L, Hu J (2022) Recent advances based on Mg anodes and their interfacial modulation in Mg batteries. J Magnes Alloys 10(10):2699–2716

    Article  CAS  Google Scholar 

  14. Forero-Saboya JD, Tchitchekova DS, Johansson P, Palacín MR, Ponrouch A (2022) Interfaces and interphases in Ca and Mg batteries. Adv Mater Interfaces 9(8):2101578

    Article  CAS  Google Scholar 

  15. Kopač Lautar A, Bitenc J, Dominko R, Filhol J-S (2021) Building ab initio interface Pourbaix diagrams to investigate electrolyte stability in the electrochemical double layer: application to magnesium batteries. ACS Appl Mater Interfaces 13(7):8263–8273

    Article  PubMed  Google Scholar 

  16. Kopač Lautar A, Bitenc J, Rejec T, Dominko R, Filhol J-S, Doublet M-L (2020) Electrolyte reactivity in the double layer in Mg Batteries: an interface potential-dependent DFT study. J Am Chem Soc 142(11):5146–5153

    Article  PubMed  Google Scholar 

  17. Attias R, Salama M, Hirsch B, Goffer Y, Aurbach D (2019) Anode-electrolyte interfaces in secondary magnesium batteries. Joule 3(1):27–52

    Article  CAS  Google Scholar 

  18. Rashad M, Asif M, Wang Y, He Z, Ahmed I (2020) Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries. Energy Storage Materials 25:342–375

    Article  Google Scholar 

  19. Jankowski P, Li Z, Zhao-Karger Z, Diemant T, Fichtner M, Vegge T, Lastra JMG (2022) Development of magnesium borate electrolytes: explaining the success of Mg[B(hfip)4]2 salt. Energy Storage Materials 45:1133–1143

    Article  Google Scholar 

  20. Pechberty C, Hagopian A, Ledeuil J-B, Foix D, Allouche J, Chotard J-N, Lužanin O, Bitenc J, Dominko R, Dedryvère R, Filhol J-S, Stievano L, Berthelot R (2022) Alloying electrode coatings towards better magnesium batteries. J Mater Chem A 10(22):12104–12113

    Article  CAS  Google Scholar 

  21. Son S-B, Gao T, Harvey SP, Steirer KX, Stokes A, Norman A, Wang C, Cresce A, Xu K, Ban C (2018) An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat Chem 10(5):532–539

    Article  CAS  PubMed  Google Scholar 

  22. Liang Z, Ban C (2021) Strategies to enable reversible magnesium electrochemistry: from electrolytes to artificial solid–electrolyte interphases. Angew Chem Int Ed 60(20):11036–11047

    Article  CAS  Google Scholar 

  23. Tang K, Du A, Dong S, Cui Z, Liu X, Lu C, Zhao J, Zhou X, Cui G (2020) A stable solid electrolyte interphase for magnesium metal anode evolved from a bulky anion lithium salt. Adv Mater 32(6):1904987

    Article  CAS  Google Scholar 

  24. Chen T, Sai Gautam G, Canepa P (2019) Ionic transport in potential coating materials for Mg batteries. Chem Mater 31(19):8087–8099

    Article  CAS  Google Scholar 

  25. Wang C, Mueller T, Assary RS (2022) Ionic dynamics of the charge carrier in layered solid materials for Mg rechargeable batteries. Chem Mater 34(19):8769–8776

    Article  CAS  Google Scholar 

  26. Park H, Lim H-K, Oh SH, Park J, Lim H-D, Kang K (2020) Tailoring ion-conducting interphases on magnesium metals for high-efficiency rechargeable magnesium metal batteries. ACS Energy Lett 5(12):3733–3740

    Article  CAS  Google Scholar 

  27. Shin S, Kwak JH, Oh SH, Kim H-S, Yu S-H, Lim H-D (2023) Reversible Mg-metal batteries enabled by a Ga-rich protective layer through one-step interface engineering. ACS Appl Mater Interfaces 15(23):28684–28691

    Article  CAS  PubMed  Google Scholar 

  28. Qiu M, Jia H, Lan C, Liu H, Fu S (2022) An enhanced kinetics and ultra-stable zinc electrode by functionalized boron nitride intermediate layer engineering. Energy Storage Materials 45:1175–1182

    Article  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 78(7):1396–1396

    Article  Google Scholar 

  30. Kresse G, Furthmüller J, Hafner J (1994) Theory of the crystal structures of selenium and tellurium: the effect of generalized-gradient corrections to the local-density approximation. Phys Rev B 50(18):13181–13185

    Article  CAS  Google Scholar 

  31. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  CAS  Google Scholar 

  32. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Article  Google Scholar 

  33. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799

    Article  CAS  PubMed  Google Scholar 

  34. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the dam** function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465

    Article  CAS  PubMed  Google Scholar 

  35. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104

    Article  PubMed  Google Scholar 

  36. Martyna GJ, Klein ML, Tuckerman M (1992) Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97(4):2635–2643

    Article  Google Scholar 

  37. Wang V, Xu N, Liu J-C, Tang G, Geng W-T (2021) VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun 267:108033

    Article  CAS  Google Scholar 

  38. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276

    Article  CAS  Google Scholar 

  39. Idrees M, Nguyen CV, Bui HD, Amin B (2020) Electronic and optoelectronic properties of van der Waals heterostructure based on graphene-like GaN, blue phosphorene, SiC, and ZnO: A first principles study. J Appl Phys 127:(24)

  40. Deng Z, Wang X (2019) Strain engineering on the electronic states of two-dimensional GaN/graphene heterostructure. RSC Adv 9(45):26024–26029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Al Balushi ZY, Wang K, Ghosh RK, Vilá RA, Eichfeld SM, Caldwell JD, Qin X, Lin Y-C, DeSario PA, Stone G, Subramanian S, Paul DF, Wallace RM, Datta S, Redwing Joan M, Robinson JA (2016) Two-dimensional gallium nitride realized via graphene encapsulation. Nat Mater 15(11):1166–1171

    Article  CAS  PubMed  Google Scholar 

  42. Khan AA, Ahmad R, Ahmad I (2021) Silicon carbide and III-nitrides nanosheets: promising anodes for Mg-ion batteries. Mater Chem Phys 257:123785

    Article  CAS  Google Scholar 

  43. **ong L, Wang H, **ong W, Yu S, Ouyang C (2019) First principles study of g-Mg3N2 as an anode material for Na-, K-, Mg- Ca- and Al-ion storage. RSC Adv 9(47):27378–27385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lv R, Guan X, Zhang J, **a Y, Luo J (2019) Enabling Mg metal anodes rechargeable in conventional electrolytes by fast ionic transport interphase. Natl Sci Rev 7(2):333–341

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liang Y-B, Liu K, Liu Z, Wang J, Liu C-S, Liu Y (2022) A first-principles study of monolayer and heterostructure antimonene as potential anode materials for magnesium-ion batteries. Appl Surf Sci 577:151880

    Article  CAS  Google Scholar 

  46. Wang H, Wu M, Lei X, Tian Z, Xu B, Huang K, Ouyang C (2018) Siligraphene as a promising anode material for lithium-ion batteries predicted from first-principles calculations. Nano Energy 49:67–76

    Article  CAS  Google Scholar 

  47. Kühne M, Paolucci F, Popovic J, Ostrovsky PM, Maier J, Smet JH (2017) Ultrafast lithium diffusion in bilayer graphene. Nat Nanotechnol 12(9):895–900

    Article  PubMed  Google Scholar 

  48. Zhong K, Hu R, Xu G, Yang Y, Zhang J-M, Huang Z (2019) Adsorption and ultrafast diffusion of lithium in bilayer graphene: ab initio and kinetic Monte Carlo simulation study. Phys Rev B 99(15):155403

    Article  CAS  Google Scholar 

  49. Brown OR, McIntyre R (1985) The magnesium and magnesium amalgam electrodes in aprotic organic solvents a kinetic study. Electrochim Acta 30(5):627–633

    Article  CAS  Google Scholar 

  50. Lu Z, Schechter A, Moshkovich M, Aurbach D (1999) On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J Electroanal Chem 466(2):203–217

    Article  CAS  Google Scholar 

  51. Lalitha M, Mahadevan SS, Lakshmipathi S (2017) Improved lithium adsorption in boron- and nitrogen-substituted graphene derivatives. J Mater Sci 52(2):815–831

    Article  CAS  Google Scholar 

  52. Drygaś M, Lejda K, Janik JF, Łyszczarz K, Gierlotka S, Stelmakh S, Pałosz B (2021) New nitride nanoceramics from synthesis-mixed nanopowders in the composite system gallium nitride GaN-titanium nitride TiN. Materials (Basel) 14(14):3794. https://doi.org/10.3390/ma14143794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Srinivasan L, Gazeli K, Prasanna S, Invernizzi L, RocaiCabarrocasLombardi PG, Ouaras K (2024) Gallium nitride deposition via magnetron sputtering: linking plasma-surface interactions and thin film crystalline features. Vacuum 224:113185

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Nandhini Panjulingam: Methodology, Data curation, Format analysis, Writing-original draft. Senthilkumar Lakshmipathi: Methodology, Software, Data curation, Format analysis, review and editing.

Corresponding author

Correspondence to Senthilkumar Lakshmipathi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3902 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panjulingam, N., Lakshmipathi, S. 2D g-GaN as interphase anode layer in Mg battery for capturing passivation species (MgO, Mg(OH)2, MgCO3) — A first-principles study. Ionics (2024). https://doi.org/10.1007/s11581-024-05620-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05620-3

Keywords

Navigation