Log in

Anchoring MoS2 microflowers on oxygen-doped g-C3N4 nanosheets to construct Z-scheme hybrid composites for photocatalytic hydrogen production

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Fabricating carbon nitride (g-C3N4) based photocatalysts with high visible-light utilization efficiency and rapid photogenerated carrier migration rate is crucial for the improvement of photocatalytic hydrogen production. Herein, we designed and prepared Z-scheme O-CNS/MoS2 hybrid composites via a two-step combining with ultrasound sonication method. The obtained O-CNS/MoS2 composites possessed boosting visible-light absorption capacity, revealed by the results of the diffused reflectance spectra (DRS). In contrast to bulk g-C3N4 (u-CNB) and O-CNS samples, the obtained O-CNS/MoS2 composites displayed significantly enhanced photocatalytic hydrogen behavior. Specifically, the O-CNS/MoS2 photocatalysts with 5 wt% loading of MoS2 exhibited the highest hydrogen production rate (HPR), which was respectively 26.5 and 1.97 times bigger than that of u-CNB and O-CNS sample correspondingly. This promoted photocatalytic hydrogen behavior was plausibly attributed to the synergistic effect of the porous structure, improved light absorption capacity, and enhanced photoactivated carrier migration rate. Based on comprehensive analysis, the migration and separation pathway of photoactivated carriers were proposed for interpreting the enhancement mechanism of the photocatalytic hydrogen behavior. Our work will open up an innovative strategy for the design and construction of novel g-C3N4 hybrid photocatalysts with boosting photocatalytic hydrogen production behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Sadanandan A, Yang J, Devtade V, Singh G, Dharmarajan N, Fawaz M, Lee J, Tavakkoli E, Jeon C, Kumar P, Vinu A (2024) Carbon nitride based nanoarchitectonics for nature-inspired photocatalytic CO2 reduction. Prog Mater Sci 142:101242. https://doi.org/10.1016/j.pmatsci.2024.101242

    Article  CAS  Google Scholar 

  2. Hong Y, Yang L, Tian Y, Lin X, Liu E, Sun W, Liu Y, Zhu C, Li X, Shi J (2023) Rational design 2D/3D MoS2/In2O3 composites for great boosting photocatalytic H2 production coupled with dye degradation. J Taiwan Inst Chem Eng 146:104862. https://doi.org/10.1016/j.jtice.2023.104862

    Article  CAS  Google Scholar 

  3. Tian Y, Hong Y, Chen B, Zhang K, Hong D, Lin X, Shi J (2024) Facile template-free fabrication of different micro/nanostructured In2O3 for photocatalytic H2 production from glucose solution. Int J Hydrogen Energy 51:475–487. https://doi.org/10.1016/j.ijhydene.2023.08.223

    Article  CAS  Google Scholar 

  4. Kumar P, Singh G, Guan X, Lee J, Bahadur R, Ramadass K, Kumar P, Kibria M, Vidyasagar D, Yi J, Vinu A (2023) Multifunctional carbon nitride nanoarchitectures for catalysis. Chem Soc Rev 52:7602. https://doi.org/10.1039/D3CS00213F

    Article  CAS  PubMed  Google Scholar 

  5. Liang Q, Zhang C, Xu S, Zhou M, Zhou Y, Li Z (2020) In situ growth of CdS quantum dots on phosphorus-doped carbon nitride hollow tubes as active 0D/1D heterostructures for photocatalytic hydrogen evolution. J Colloid Interf Sci 577:1–11. https://doi.org/10.1016/j.jcis.2020.05.053

    Article  CAS  Google Scholar 

  6. Wu M, Zhang J, He B, Wang H, Wang R, Gong Y (2019) In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution. Appl Catal B: Environ 241:159–166. https://doi.org/10.1016/j.apcatb.2018.09.037

    Article  CAS  Google Scholar 

  7. Jiang M, Yuan X, Zeng G, Chen X, Wu Z, Liang J, Zhang J, Wang H, Wang H (2017) Phosphorus-and sulfur-codoped g-C3N4: facile preparation, mechanism insight, and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation. ACS Sustain Chem Eng 5:5831–5841. https://doi.org/10.1021/acssuschemeng.7b00559

    Article  CAS  Google Scholar 

  8. Dharmarajan N, Vidyasagar D, Yang J, Talapaneni S, Lee J, Ramadass K, Singh G, Fawaz M, Kumar P, Vinu A (2024) Bio-inspired supramolecular self-assembled carbon nitride nanostructures for photocatalytic water splitting. Adv Mater 36:2306895. https://doi.org/10.1002/adma.202306895

    Article  CAS  Google Scholar 

  9. Wang L, Zhou G, Tian Y, Yan L, Deng M, Yang B, Kang Z, Sun H (2019) Hydroxyl decorated g-C3N4 nanoparticles with narrowed bandgap for high efficient photocatalyst design. App Catal B: Environ 244:262–271. https://doi.org/10.1016/j.apcatb.2018.11.054

    Article  CAS  Google Scholar 

  10. Zhu B, Cheng B, Fan J, Ho W, Yu J (2021) g-C3N4-based 2D/2D composite heterojunction photocatalyst. Small Struct 2:2100086. https://doi.org/10.1002/sstr.202100086

    Article  CAS  Google Scholar 

  11. Liang L, Shi L, Wang F, Yao L, Zhang Y, Qi W (2019) Synthesis and photo-catalytic activity of porous g-C3N4: promotion effect of nitrogen vacancy in H2 evolution and pollutant degradation reactions. Int J Hydrogen Energy 44:16315–16326. https://doi.org/10.1016/j.ijhydene.2019.05.001

    Article  CAS  Google Scholar 

  12. Liang L, Shi L, Wang F, Wang H, Yan P, Cong Y, Yao L, Yang Z, Qi W (2020) g-C3N4 nano-fragments as highly efficient hydrogen evolution photocatalysts: boosting effect of nitrogen vacancy. Appl Catal A General 599:117618. https://doi.org/10.1016/j.apcata.2020.117618

    Article  CAS  Google Scholar 

  13. Liang L, Shi L, Wang F, Wang H, Qi W (2020) The improvement of photocatalytic performance for hydrogen evolution over mesoporous g-C3N4 with nitrogen defects. Sustain Energy Fuels 4:5179–5187. https://doi.org/10.1039/D0SE01012J

    Article  CAS  Google Scholar 

  14. Samanta S, Martha S, Parida K (2014) Facile synthesis of Au/g-C3N4 nanocomposites: an inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible-light irradiation. ChemCatChem 6:1453–1462. https://doi.org/10.1002/cctc.201300949

    Article  CAS  Google Scholar 

  15. Liu E, Lin X, Hong Y, Yang L, Luo B, Shi W, Shi J (2021) Rational copolymerization strategy engineered C self-doped g-C3N4 for efficient and robust solar photocatalytic H2 evolution. Renew Energy 178:757–765. https://doi.org/10.1016/j.renene.2021.06.066

    Article  CAS  Google Scholar 

  16. Shi L, Liu G, Zhang Y, Yang Z (2023) Na, O co-do** and cyano groups synergistically adjust the band structure of g-C3N4 for improving photocatalytic oxygen evolution. Mater Res Bull 167:112423. https://doi.org/10.1016/j.materresbull.2023.112423

    Article  CAS  Google Scholar 

  17. Guo F, Shi W, Zhu C, Li H, Kang Z (2018) CoO and g-C3N4 complement each other for highly efficient overall water splitting under visible light. Appl Catal B: Environ 226:412–420. https://doi.org/10.1016/j.apcatb.2017.12.064

    Article  CAS  Google Scholar 

  18. Yan J, Wu H, Chen H, Pang L, Zhang Y, Jiang R, Li L, Liu S (2016) One-pot hydrothermal fabrication of layered β-Ni(OH)2/g-C3N4 nanohybrids for enhanced photocatalytic water splitting. Appl Catal B: Environ 194:74–83. https://doi.org/10.1016/j.apcatb.2016.04.048

    Article  CAS  Google Scholar 

  19. **ong T, Cen W, Zhang Y, Dong F (2016) Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal 6:2462–2472. https://doi.org/10.1021/acscatal.5b02922

    Article  CAS  Google Scholar 

  20. Wang K, Li Q, Liu B, Cheng B, Ho W, Yu J (2015) Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl Catal B: Environ 176:44–52. https://doi.org/10.1016/j.apcatb.2015.03.045

    Article  CAS  Google Scholar 

  21. Wu S, Mu Z, Fu G, Zhang J, Wang Y (2022) Multi-regulation of charge separation and band structure by a novel O-doped g-C3N4 nanosheets homojunction for enhanced photodegradation performance. J Alloys Compd 918:165793. https://doi.org/10.1016/j.jallcom.2022.165793

    Article  CAS  Google Scholar 

  22. Zhu D, Zhou Q (2021) Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light. Appl Catal B: Environ 281:119474. https://doi.org/10.1016/j.apcatb.2020.119474

    Article  CAS  Google Scholar 

  23. Zhou P, Meng X, Li L, Sun T (2020) P, S Co-doped g-C3N4 isotype heterojunction composites for high-efficiency photocatalytic H2 evolution. J Alloys Compd 827:154259. https://doi.org/10.1016/j.jallcom.2020.154259

    Article  CAS  Google Scholar 

  24. Liu C, Huang H, Cui W, Dong F, Zhang F (2018) Band structure engineering and efficient charge transport in oxygen substituted g-C3N4 for superior photocatalytic hydrogen evolution. Appl Catal B: Environ 230:115–124. https://doi.org/10.1016/j.apcatb.2018.02.038

    Article  CAS  Google Scholar 

  25. Huang Z, Song J, Pan L, Wang Z, Zhang X, Zou J, Mi W, Zhang X, Wang L (2015) Carbon nitride with simultaneous porous network and O-do** for efficient solar-energy-driven hydrogen evolution. Nano Energy 12:646–656. https://doi.org/10.1016/j.nanoen.2015.01.043

    Article  CAS  Google Scholar 

  26. Zhang Z, Ji R, Sun Q, He J, Chen D, Li N, Li H, Marcomini A, Xu Q, Lu J (2023) Enhanced photocatalytic degradation of 2-chlorophenol over Z-scheme heterojunction of CdS-decorated oxygen-doped g-C3N4 under visible-light. Appl Catal B: Environ 324:122276. https://doi.org/10.1016/j.apcatb.2022.122276

    Article  CAS  Google Scholar 

  27. Hosseini S, Safarifard V (2024) MoS2@MOF composites: design strategies and photocatalytic applications. Mat Sci Semicon Proc 169:1078921. https://doi.org/10.1016/j.mssp.2023.107892

    Article  CAS  Google Scholar 

  28. Chen L, Ashad M, Chuang Y, Chen C, Dong C (2023) Efficient photoelectrochemical water splitting and photocatalytic performance for graphene-bridged MoS2–Fe2O3 nanocomposite under visible light active: insights into photocatalysis mechanism. Mat Sci Semicon Proc 167:107780. https://doi.org/10.1016/j.mssp.2023.107780

    Article  CAS  Google Scholar 

  29. Liu S, Yang Y, **ao W, **a S, ** C, Wang W, Li S, Zhong M, Wang S, Chen C (2023) Metal-organic frameworks derived porous MoS2/CdS heterostructure for efficient photocatalytic performance towards hydrogen evolution and organic pollutants. Int J Hydrogen Energy 48:32729–32738. https://doi.org/10.1016/j.ijhydene.2023.05.050

    Article  CAS  Google Scholar 

  30. Wei X, Zhang X, Ali S, Han W, He D, Wang J, Kong S, Feng Z, Zhang G, Qi J (2021) Elucidating the mechanistic origins of P dopants triggered active sites and direct Z-scheme charge transfer by P-MoS2@WO3 heterostructures for efficient photocatalytic hydrogen evolution. J Alloys Compd 872:159637. https://doi.org/10.1016/j.jallcom.2021.159637

    Article  CAS  Google Scholar 

  31. Huang T, Chen W, Liu T, Hao Q, Liu X (2017) ZnIn2S4 hybrid with MoS2: a non-noble metal photocatalyst with efficient photocatalytic activity for hydrogen evolution. Powder Technol 315:157–162. https://doi.org/10.1016/j.powtec.2017.03.054

    Article  CAS  Google Scholar 

  32. Hao X, ** Z, Yang H, Lu G, Bi Y (2017) Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution. Appl Catal B: Environ 210:45–56. https://doi.org/10.1016/j.apcatb.2017.03.057

    Article  CAS  Google Scholar 

  33. Zhang Z, Huang L, Zhang J, Wang F, **e Y, Shang X, Gu Y, Zhao H, Wang X (2018) In situ constructing interfacial contact MoS2/ZnIn2S4 heterostructure for enhancing solar photocatalytic hydrogen evolution. Appl Catal B: Environ 233:112–119. https://doi.org/10.1016/j.apcatb.2018.04.006

    Article  CAS  Google Scholar 

  34. Hunge Y, Yadav A, Kang S, Lim S, Kim H (2023) Visible light activated MoS2/ZnO composites for photocatalytic degradation of ciprofloxacin antibiotic and hydrogen production. J Photoch Photobio A 434:114250. https://doi.org/10.1016/j.jphotochem.2022.114250

    Article  CAS  Google Scholar 

  35. Liu Y, Xu X, Zhang J, Zhang H, Tian W, Li X, Tade M, Sun H, Wang S (2018) Flower-like MoS2 on graphitic carbon nitride for enhanced photocatalytic and electrochemical hydrogen evolutions. Appl Catal B: Environ 239:334–344. https://doi.org/10.1016/j.apcatb.2018.08.028

    Article  CAS  Google Scholar 

  36. Li X, Wang S, Li Y, Huang H, Li M, Long P, Cao X, Zhang J, Zhou M, Zhou Z, Lu S, Ding K (2024) One-step synthesis of 2D/2D g-C3N4/MoS2 composites for effective photocatalytic hydrogen evolution. Mater Sci Eng B 303:117265. https://doi.org/10.1016/j.mseb.2024.117265

    Article  CAS  Google Scholar 

  37. Yang C, Chai H, Xu P, Wang P, Wang X, Shen T, Zheng Q, Zhang G (2022) One-step synthesis of a 3D/2D Bi2WO6/g-C3N4 heterojunction for effective photocatalytic degradation of atrazine: kinetics, degradation mechanisms and ecotoxicity. Sep Purif Technol 288:120609. https://doi.org/10.1016/j.seppur.2022.120609

    Article  CAS  Google Scholar 

  38. Dong H, **ao M, Zhu D, Zuo Y, Cheng S, Han Z, Li C (2021) CoCO3 hierarchical structure embedded on g-C3N4 nanosheets to assemble 3D/2D Z-scheme heterojunction towards efficiently and stably photocatalytic hydrogen production. Int J Hydrogen Energ 46:32044–32054. https://doi.org/10.1016/j.ijhydene.2021.06.222

    Article  CAS  Google Scholar 

  39. Wang L, Wang Y, Li X, He T, Wang R, Zhao Y, Song H, Wang H (2021) 3D/2D Fe2O3/g-C3N4 Z-scheme heterojunction catalysts for fast, effective and stable photo Fenton degradation of AZO dyes. J Environ Chem Eng 6:105907. https://doi.org/10.1016/j.jece.2021.105907

    Article  CAS  Google Scholar 

  40. Yan J, Chai B, Liu Y, Fan G, Song G (2023) Construction of 3D/2D ZnFe2O4/g-C3N4 S-scheme heterojunction for efficient photo-Fenton degradation of tetracycline hydrochloride. Appl Surf Sci 607:155088. https://doi.org/10.1016/j.apsusc.2022.155088

    Article  CAS  Google Scholar 

  41. Jia TK, Fu F, Deng Z, Long F, Yu D, Cui Q, Wang W (2020) Rational construction of direct Z-scheme SnS-g-C3N4 hybrid photocatalyst for significant enhancement of visible-light photo-catalytic activity. Appl Surf Sci 499:143941. https://doi.org/10.1016/j.apsusc.2019.143941

    Article  CAS  Google Scholar 

  42. Zhou Y, Zhou L, Ni C, He E, Yu L, Li X (2022) 3D/2D MOF-derived CoCeOx/g-C3N4 Z-scheme heterojunction for visible light photocatalysis: hydrogen production and degradation of carbamazepine. J Alloys Compd 890:161786. https://doi.org/10.1016/j.jallcom.2021.161786

    Article  CAS  Google Scholar 

  43. Yu D, Jia T, Deng Z, Wei Q, Wang K, Chen L, Wang P, Cui J (2022) One-dimensional P-doped graphitic carbon nitride tube: facile synthesis, effect of do** concentration, and enhanced mechanism for photocatalytic hydrogen evolution. Nanomaterials 12:1759. https://doi.org/10.3390/nano12101759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lafta M, Ammar S (2023) Synthesis and photocatalytic activity of polyoxometalates immobilized onto g-C3N4/ZIF-67 heterostructures. Mat Sci Semicon Proc 153:107131. https://doi.org/10.1016/j.mssp.2022.107131

    Article  CAS  Google Scholar 

  45. Pham T, Myung Y, Le Q, Kim T (2022) Visible-light photocatalysis of Ag-doped graphitic carbon nitride for photodegradation of micropollutants in wastewater. Chemosphere 301:134626. https://doi.org/10.1016/j.chemosphere.2022.134626

    Article  CAS  PubMed  Google Scholar 

  46. Barrio J, Shalom M (2018) Photoactive carbon nitride from melamine hydrochloride supramolecular assembly. Mater Sci Semicond Process 73:78–82. https://doi.org/10.1016/j.mssp.2017.04.015

    Article  CAS  Google Scholar 

  47. Huang K, Li C, Zhang X, Wang L, Wang W, Meng X (2021) Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution. Green Energy Environ 8:233–245. https://doi.org/10.1016/j.gee.2021.03.011

    Article  CAS  Google Scholar 

  48. Zhang F, **e F, Zhu S, Liu J, Zhang J, Mei S, Zhao W (2013) A novel photofunctional g-C3N4/Ag3PO4 bulk heterojunction for decolorization of RhB. Chem Eng J 228:435–441. https://doi.org/10.1016/j.cej.2013.05.027

    Article  CAS  Google Scholar 

  49. Lin X, Wu Y, **ang J, He D, Li S (2016) Elucidation of mesopore-organic molecules interactions in mesoporous TiO2 photocatalysts to improve photocatalytic activity. Appl Catal B Environ 199:64–74. https://doi.org/10.1016/j.apcatb.2016.06.023

    Article  CAS  Google Scholar 

  50. Jiang W, Zong X, An L, Hua S, Miao X, Luan S, Wen Y, Tao F, Sun Z (2018) Consciously constructing heterojunction or direct Z-scheme photocatalysts by regulating electron flow direction. ACS Catal 8:2209–2217. https://doi.org/10.1021/acscatal.7b04323

    Article  CAS  Google Scholar 

  51. Yang M, Wang Z, Yao L, Shi L (2023) Construction of 2D/2D Ti3C2/Bi12O17Cl2: effective charge separation and improved photocatalytic activity. Mater Res Bull 159:112110. https://doi.org/10.1016/j.materresbull.2022.112110

    Article  CAS  Google Scholar 

  52. Zhang X, Shi L, Zhang Y (2022) Preparation of organic-inorganic PDI/BiO2-x photocatalyst with boosted photocatalytic performance. J Taiwan Inst Chem Eng 132:10411. https://doi.org/10.1016/j.jtice.2021.10.011

    Article  CAS  Google Scholar 

  53. Li W, Wang X, Ma Q, Wang F, Chu X, Wang X, Wang C (2021) CdS@h-BN heterointerface construction on reduced graphene oxide nanosheets for hydrogen production. Appl Catal B Environ 284:119688. https://doi.org/10.1016/j.apcatb.2020.119688

    Article  CAS  Google Scholar 

  54. Zheng J, Lei Z (2018) Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability. Appl Catal B: Environ 237:1–8. https://doi.org/10.1016/j.apcatb.2018.05.060

    Article  CAS  Google Scholar 

  55. Hirayama N, Nakata H, Wakayama H, Nishioka S, Kanazawa T, Kamata R, Ebato Y, Kato K, Kumaga H, Yamakata A (2019) Solar-driven photoelectrochemical water oxidation over an n-type lead-titanium oxyfluoride anode. J Am Chem Soc 141:17158–17165. https://doi.org/10.1021/jacs.9b06570

    Article  CAS  PubMed  Google Scholar 

  56. Wu Z, Zhao G, Zhang Y, Liu J, Zhang Y, Shi H (2015) A solar-driven photocatalytic fuel cell with dual photoelectrode for simultaneous wastewater treatment and hydrogen production. J Mater Chem A 3:3416–3424. https://doi.org/10.1039/C4TA06604A

    Article  CAS  Google Scholar 

  57. Sun J, He Y, He S, Liu D, Lu K, Yao W, Jia N (2022) A self-powered photoelectrochemical cathodic molecular imprinting sensor based on Au@TiO2 nanorods photoanode and Cu2O photocathode for sensitive detection of sarcosine. Biosens Bioelectron 204:114056. https://doi.org/10.1016/j.bios.2022.114056

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express grateful thanks to the Department of Science and Technology of Henan Province, China (Henan Science and Technology Research Program, 222102520005 and 232102521021), and the Education Department of Henan Province for the fund support (21A430026).

Author information

Authors and Affiliations

Authors

Contributions

Tiekun Jia: conceptualization, wring—original draft, writing—review and editing. Zhao Deng: formal analysis, investigation. Dongsheng Yu: investigation, data curation. Fang Fu: investigation, data curation. Qian Zhang: investigation, writing—review and editing. Yinao Wang: investigation, writing—review and editing. Ji Hu: measurements. Jili Li: methodology, formal analysis. Joong Hee Lee: supervision.

Corresponding author

Correspondence to Tiekun Jia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 176 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, T., Deng, Z., Yu, D. et al. Anchoring MoS2 microflowers on oxygen-doped g-C3N4 nanosheets to construct Z-scheme hybrid composites for photocatalytic hydrogen production. Ionics 30, 3417–3429 (2024). https://doi.org/10.1007/s11581-024-05540-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05540-2

Keywords

Navigation