Log in

Highly sensitive and selective detection of the pancreatic cancer biomarker CA 19-9 with the electrolyte-gated MoS2-based field-effect transistor immunosensor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Since evaluating CA 19-9 antigen level in human serum is crucial for the early diagnosis of a vast range of diseases, especially pancreatic cancer, applying a simple, rapid, and sensitive detection method is essential. We employed an electrolyte-gated field-effect transistor with MoS2 nanosheets channel as an immunosensor to recognize CA 19-9 tumor marker. In order to obtain MoS2 nanosheets and use them as a semiconducting channel, the liquid phase exfoliation method was performed. Later, the MoS2 channel surface was modified by covalent immobilization of antibody 19-9. Electrical measurements revealed the depletion mode n-type behavior of MoS2 nanosheets with the FET mobility of 0.02 cm2 V-1 s-1, current on/off ratio of 883.96, and the subthreshold swing of 795.54 mV/decade. Due to the n-type behavior of the MoS2-based FET immunosensor, with increasing the concentration of the CA 19-9 antigen at a wide linear concentration range from 1.0×10-12 U/ml to 1.0×10-4 U/ml, the source-drain current decreased and low detection limit of 2.8×10-13 U/ml was obtained. The designed MoS2-based FET immunosensor, owning high selectivity, performed accurately for trace amounts of real human serum samples. The remarkable properties of this immunosensor enable the diagnosis of pancreatic cancer in the early stages, which increases the chance of curing this disease.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ryan DP, Hong TS, Bardeesy N (2014) Pancreatic adenocarcinoma. N Engl J Med 371:1039–1049. https://doi.org/10.1056/NEJMra1404198

    Article  CAS  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30. https://doi.org/10.3322/caac.21332

    Article  PubMed  Google Scholar 

  3. Li D, **e K, Wolff R et al (2004) Pancreatic cancer. Lancet 363:1049–1057. https://doi.org/10.1016/S0140-6736(04)15841-8

    Article  CAS  PubMed  Google Scholar 

  4. Schrag D (2016) Optimizing Treatment for Locally Advanced Pancreas Cancer: Progress but No Precision. JAMA 315:1837–1838. https://doi.org/10.1001/jama.2016.4284

    Article  CAS  PubMed  Google Scholar 

  5. **ng H, Wang J, Wang Y et al (2018) Diagnostic Value of CA 19-9 and Carcinoembryonic Antigen for Pancreatic Cancer: A Meta-Analysis. Gastroenterol Res Pract 2018:8704751. https://doi.org/10.1155/2018/8704751

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ballehaninna UK, Chamberlain RS (2012) The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal. J Gastrointest Oncol 3:105–119. https://doi.org/10.3978/j.issn.2078-6891.2011.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Katz MH, Varadhachary GR, Fleming JB et al (2010) Serum CA 19-9 as a marker of resectability and survival in patients with potentially resectable pancreatic cancer treated with neoadjuvant chemoradiation. Ann Surg Oncol 17:1794–1801. https://doi.org/10.1245/s10434-010-0943-1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Choe JW, Kim JS, Kim HJ et al (2016) Value of Early Check-Up of Carbohydrate Antigen 19-9 Levels for Pancreatic Cancer Screening in Asymptomatic New-Onset Diabetic Patients. Pancreas 45:730–734. https://doi.org/10.1097/MPA.0000000000000538

    Article  CAS  PubMed  Google Scholar 

  9. Marchegiani G, Andrianello S, Malleo G et al (2017) Does size matter in pancreatic cancer? Ann Surg 266:142–148. https://doi.org/10.1097/SLA.0000000000001837

    Article  PubMed  Google Scholar 

  10. Ferrone CR, Finkelstein DM, Thayer SP et al (2006) Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma. J Clin Oncol: Off J Am Soc Clin Oncol 24. https://doi.org/10.1200/JCO.2005.05.3934

  11. Schlieman MG, Ho HS, Bold RJ (2003) Utility of tumor markers in determining resectability of pancreatic cancer. Arch Surg 138:951–955; discussion 955-956. https://doi.org/10.1001/archsurg.138.9.951

    Article  PubMed  Google Scholar 

  12. Park JK, Paik WH, Ryu JK et al (2013) Clinical significance and revisiting the meaning of CA 19-9 blood level before and after the treatment of pancreatic ductal adenocarcinoma: analysis of 1,446 patients from the pancreatic cancer cohort in a single institution. PLoS One 8:e78977. https://doi.org/10.1371/journal.pone.0078977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tzeng CW, Balachandran A, Ahmad M et al (2014) Serum carbohydrate antigen 19-9 represents a marker of response to neoadjuvant therapy in patients with borderline resectable pancreatic cancer. HPB (Oxford) 16:430–438. https://doi.org/10.1111/hpb.12154

    Article  PubMed  Google Scholar 

  14. Chung KH, Ryu JK, Lee BS et al (2016) Early decrement of serum carbohydrate antigen 19-9 predicts favorable outcome in advanced pancreatic cancer. J Gastroenterol Hepatol 31:506–512. https://doi.org/10.1111/jgh.13075

    Article  CAS  PubMed  Google Scholar 

  15. Song S-P, Li B, Hu J et al (2004) Simultaneous multianalysis for tumor markers by antibody fragments microarray system. Anal Chim Acta 510:147–152. https://doi.org/10.1016/j.aca.2004.01.020

    Article  CAS  Google Scholar 

  16. Nishizono I, Iida S, Suzuki N et al (1991) Rapid and sensitive chemiluminescent enzyme immunoassay for measuring tumor markers. Clin Chem 37:1639–1644. https://doi.org/10.1093/clinchem/37.9.1639

    Article  CAS  PubMed  Google Scholar 

  17. Lin J, Yan F, Hu X et al (2004) Chemiluminescent immunosensor for CA19-9 based on antigen immobilization on a cross-linked chitosan membrane. J Immunol Methods 291:165–174. https://doi.org/10.1016/j.jim.2004.06.001

    Article  CAS  PubMed  Google Scholar 

  18. Zhang A, **ang H, Zhang X et al (2016) A novel sandwich electrochemiluminescence immunosensor for ultrasensitive detection of carbohydrate antigen 19-9 based on immobilizing luminol on Ag@BSA core/shell microspheres. Biosens Bioelectron 75:206–212. https://doi.org/10.1016/j.bios.2015.08.047

    Article  CAS  PubMed  Google Scholar 

  19. Sha Y, Guo Z, Chen B et al (2015) A one-step electrochemiluminescence immunosensor preparation for ultrasensitive detection of carbohydrate antigen 19-9 based on multi-functionalized graphene oxide. Biosens Bioelectron 66:468–473. https://doi.org/10.1016/j.bios.2014.12.013

    Article  CAS  PubMed  Google Scholar 

  20. Ohkura H, Sakawaki O, Ozaki H (1985) Enzyme immunoassay of CA19-9. Enzyme immunoassay and its clinical application. Kan, Tan, Sui, Japan 11:21–28

    CAS  Google Scholar 

  21. Chung J, Bernhardt R, Pyun J (2006) Additive assay of cancer marker CA 19-9 by SPR biosensor. Sens Actuators B: Chem 118:28–32. https://doi.org/10.1016/j.snb.2006.04.015

    Article  CAS  Google Scholar 

  22. Bahari D, Babamiri B, Salimi A (2020) An eco-friendly MIP-solid surface fluorescence immunosensor for detection of CA 19-9 tumor marker using Ni nanocluster as an emitter labels. J Ir Chem Soc 17:2283–2291. https://doi.org/10.1007/s13738-020-01924-z

    Article  CAS  Google Scholar 

  23. Masurkar N, Varma S, Mohana Reddy Arava L (2020) Supported and suspended 2D material-based FET biosensors. Electrochem 1:260–277. https://doi.org/10.3390/electrochem1030017

    Article  Google Scholar 

  24. Karaman O, Özcan N, Karaman C et al (2022) Electrochemical cardiac troponin I immunosensor based on nitrogen and boron-doped graphene quantum dots electrode platform and Ce-doped SnO2/SnS2 signal amplification. Mater Today Chem 23:100666. https://doi.org/10.1016/j.mtchem.2021.100666

    Article  CAS  Google Scholar 

  25. Karaman C, Yola BB, Karaman O et al (2021) Sensitive sandwich-type electrochemical SARS-CoV-2 nucleocapsid protein immunosensor. Microchim Acta 188:1–13. https://doi.org/10.1007/s00604-021-05092-6

    Article  CAS  Google Scholar 

  26. Boyacıoğlu H, Yola BB, Karaman C et al (2022) A novel electrochemical kidney injury molecule-1 (KIM-1) immunosensor based covalent organic frameworks-gold nanoparticles composite and porous NiCo2S4@ CeO2 microspheres: The monitoring of acute kidney injury. Appl Surf Sci 578:152093. https://doi.org/10.1016/j.apsusc.2021.152093

    Article  CAS  Google Scholar 

  27. Karaman C, Bölükbaşı ÖS, Yola BB et al (2022) Electrochemical neuron-specific enolase (NSE) immunosensor based on CoFe2O4@ Ag nanocomposite and AuNPs@ MoS2/rGO. Anal Chim Acta 1200:339609. https://doi.org/10.1016/j.aca.2022.339609

    Article  CAS  PubMed  Google Scholar 

  28. Yola BB, Karaman C, Özcan N et al (2022) Electrochemical Tau Protein Immunosensor Based on MnS/GO/PANI and Magnetite-incorporated Gold Nanoparticles. Electroanalysis 34:1519–1528. https://doi.org/10.1002/elan.202200159

    Article  CAS  Google Scholar 

  29. Kalyani T, Sangili A, Nanda A et al (2021) Bio-nanocomposite based highly sensitive and label-free electrochemical immunosensor for endometriosis diagnostics application. Bioelectrochemistry 139:107740. https://doi.org/10.1016/j.bioelechem.2021.107740

    Article  CAS  PubMed  Google Scholar 

  30. Bölükbaşi ÖS, Yola BB, Karaman C et al (2022) Electrochemical α-fetoprotein immunosensor based on Fe3O4NPs@ covalent organic framework decorated gold nanoparticles and magnetic nanoparticles including SiO2@ TiO2. Microchimica Acta 189:242. https://doi.org/10.1007/s00604-022-05344-z

    Article  CAS  PubMed  Google Scholar 

  31. Mao S, Chang J, Pu H et al (2017) Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem Soc Rev 46:6872–6904. https://doi.org/10.1039/c6cs00827e

    Article  CAS  PubMed  Google Scholar 

  32. Rahmani H, Majd SM, Salimi A et al (2023) Ultrasensitive immunosensor for monitoring of CA 19-9 pancreatic cancer marker using electrolyte-gated TiS3 nanoribbons field-effect transistor. Talanta 124336. https://doi.org/10.1016/j.talanta.2023.124336

  33. Seo G, Lee G, Kim MJ et al (2020) Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS nano 14:5135–5142. https://doi.org/10.1021/acsnano.0c02823

    Article  CAS  PubMed  Google Scholar 

  34. Shen Y, Tran TT, Modha S et al (2019) A paper-based chemiresistive biosensor employing single-walled carbon nanotubes for low-cost, point-of-care detection. Biosens Bioelectron 130:367–373. https://doi.org/10.1016/j.bios.2018.09.041

    Article  CAS  PubMed  Google Scholar 

  35. Majd SM, Salimi A, Astinchap B (2018) The development of radio frequency magnetron sputtered p-type nickel oxide thin film field-effect transistor device combined with nucleic acid probe for ultrasensitive label-free HIV-1 gene detection. Sens Actuators B: Chem 266:178–186. https://doi.org/10.1016/j.snb.2018.03.111

    Article  CAS  Google Scholar 

  36. Xu JJ, Luo XL, Chen HY (2005) Analytical aspects of fet-based biosensors. Front Biosci 10:420–430. https://doi.org/10.2741/1538

    Article  CAS  PubMed  Google Scholar 

  37. Wilson JA, Yoffe A (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193–335

    Article  CAS  Google Scholar 

  38. Ataca C, Sahin H, Ciraci S (2012) Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C 116:8983–8999. https://doi.org/10.1021/jp212558p

    Article  CAS  Google Scholar 

  39. Larentis S, Fallahazad B, Tutuc E (2012) Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl Phys Lett 101:223104

    Article  Google Scholar 

  40. Novoselov KS, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451–10453. https://doi.org/10.1073/pnas.0502848102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Benameur MM, Radisavljevic B, Heron JS et al (2011) Visibility of dichalcogenide nanolayers. Nanotechnology 22:125706. https://doi.org/10.1088/0957-4484/22/12/125706

    Article  CAS  PubMed  Google Scholar 

  42. Late DJ, Liu B, Matte HR et al (2012) Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates. Adv Funct Mater 22:1894–1905. https://doi.org/10.1002/adfm.201102913

    Article  CAS  Google Scholar 

  43. Li H, Lu G, Yin Z et al (2012) Optical identification of single- and few-layer MoS(2) sheets. Small 8:682–686. https://doi.org/10.1002/smll.201101958

    Article  CAS  PubMed  Google Scholar 

  44. ** X, Zhao L, Wang Z et al (2015) Strongly enhanced charge-density-wave order in monolayer NbSe 2. Nat Nanotechnol 10:765–769. https://doi.org/10.1038/nnano.2015.143

    Article  CAS  PubMed  Google Scholar 

  45. Li H, Tan Y, Liu P et al (2016) Atomic-Sized Pores Enhanced Electrocatalysis of TaS(2) Nanosheets for Hydrogen Evolution. Adv Mater 28:8945–8949. https://doi.org/10.1002/adma.201602502

    Article  CAS  PubMed  Google Scholar 

  46. Stephenson T, Li Z, Olsen B et al (2014) Lithium ion battery applications of molybdenum disulfide (MoS 2) nanocomposites. Energy Environ Sci 7:209–231. https://doi.org/10.1039/C3EE42591F

    Article  CAS  Google Scholar 

  47. Chang YH, Lin CT, Chen TY et al (2013) Highly efficient electrocatalytic hydrogen production by MoS(x) grown on graphene-protected 3D Ni foams. Adv Mater 25:756–760. https://doi.org/10.1002/adma.201202920

    Article  CAS  PubMed  Google Scholar 

  48. Manzeli S, Ovchinnikov D, Pasquier D et al (2017) 2D transition metal dichalcogenides. Nat Rev Mater 2:1–15. https://doi.org/10.1038/natrevmats.2017.33

    Article  CAS  Google Scholar 

  49. Kannan PK, Late DJ, Morgan H et al (2015) Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 7:13293–13312. https://doi.org/10.1039/c5nr03633j

    Article  CAS  PubMed  Google Scholar 

  50. Sun Y, Gao S, Lei F et al (2015) Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem Soc Rev 44:623–636. https://doi.org/10.1039/c4cs00236a

    Article  CAS  PubMed  Google Scholar 

  51. Gupta D, Chauhan V, Kumar R (2020) A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments. Inorg Chem Commun 121:108200. https://doi.org/10.1016/j.inoche.2020.108200

    Article  CAS  Google Scholar 

  52. Samy O, Zeng S, Birowosuto MD et al (2021) A Review on MoS2 properties, synthesis, sensing applications and challenges. Crystals 11:355. https://doi.org/10.3390/cryst11040355

    Article  CAS  Google Scholar 

  53. Frindt R (1966) Single crystals of MoS2 several molecular layers thick. J Appl Phys 37:1928–1929. https://doi.org/10.1063/1.1708627

    Article  CAS  Google Scholar 

  54. Zhang X, Lai Z, Tan C et al (2016) Solution-Processed Two-Dimensional MoS2 Nanosheets: Preparation, Hybridization, and Applications. Angew Chem Int Ed Engl 55:8816–8838. https://doi.org/10.1002/anie.201509933

    Article  CAS  PubMed  Google Scholar 

  55. Radisavljevic B, Radenovic A, Brivio J et al (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150. https://doi.org/10.1038/nnano.2010.279

    Article  CAS  PubMed  Google Scholar 

  56. Ishag A, Sun Y (2021) Recent Advances in Two-Dimensional MoS2 Nanosheets for Environmental Application. Ind Eng Chem Res 60:8007–8026. https://doi.org/10.1021/acs.iecr.1c01311

    Article  CAS  Google Scholar 

  57. Wang Z, Mi B (2017) Environmental Applications of 2D Molybdenum Disulfide (MoS(2)) Nanosheets. Environ Sci Technol 51:8229–8244. https://doi.org/10.1021/acs.est.7b01466

    Article  CAS  PubMed  Google Scholar 

  58. Gao X, Wang X, Ouyang X et al (2016) Flexible Superhydrophobic and Superoleophilic MoS2 Sponge for Highly Efficient Oil-Water Separation. Sci Rep 6:27207. https://doi.org/10.1038/srep27207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kaasbjerg K, Thygesen KS, Jacobsen KW (2012) Phonon-limited mobility in n-type single-layer MoS 2 from first principles. Phys Rev B 85:115317. https://doi.org/10.1103/PhysRevB.85.115317

    Article  CAS  Google Scholar 

  60. Li X, Mullen JT, ** Z et al (2013) Intrinsic electrical transport properties of monolayer silicene and MoS 2 from first principles. Phys Rev B 87:115418. https://doi.org/10.1103/PhysRevB.87.115418

    Article  CAS  Google Scholar 

  61. Ma N, Jena D (2014) Charge scattering and mobility in atomically thin semiconductors. Phys Rev X 4:011043. https://doi.org/10.1103/PhysRevX.4.011043

    Article  CAS  Google Scholar 

  62. Gopalakrishnan D, Damien D, Shaijumon MM (2014) MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 8:5297–5303. https://doi.org/10.1021/nn501479e

    Article  CAS  PubMed  Google Scholar 

  63. Cravanzola S, Muscuso L, Cesano F et al (2015) MoS2 Nanoparticles Decorating Titanate-Nanotube Surfaces: Combined Microscopy, Spectroscopy, and Catalytic Studies. Langmuir 31:5469–5478. https://doi.org/10.1021/acs.langmuir.5b00396

    Article  CAS  PubMed  Google Scholar 

  64. Wilcoxon J, Samara G (1995) Strong quantum-size effects in a layered semiconductor: MoS 2 nanoclusters. Phys Rev B 51:7299. https://doi.org/10.1103/PhysRevB.51.7299

    Article  CAS  Google Scholar 

  65. Mak KF, Lee C, Hone J et al (2010) Atomically thin MoS 2: a new direct-gap semiconductor. Phys Rev Lett 105:136805. https://doi.org/10.1103/PhysRevLett.105.136805

    Article  CAS  PubMed  Google Scholar 

  66. Fadil D, Hossain RF, Saenz GA et al (2017) On the chemically-assisted excitonic enhancement in environmentally-friendly solution dispersions of two-dimensional MoS 2 and WS 2. J Mater Chem C 5:5323–5333. https://doi.org/10.1039/C7TC01001J

    Article  CAS  Google Scholar 

  67. Porrazzo R, Bellani S, Luzio A et al (2014) Improving mobility and electrochemical stability of a water-gated polymer field-effect transistor. Org Electron 15:2126–2134. https://doi.org/10.1016/j.orgel.2014.06.002

    Article  CAS  Google Scholar 

  68. Yang F, Yang Z, Zhuo Y et al (2015) Ultrasensitive electrochemical immunosensor for carbohydrate antigen 19-9 using Au/porous graphene nanocomposites as platform and Au@ Pd core/shell bimetallic functionalized graphene nanocomposites as signal enhancers. Biosens Bioelectron 66:356–362. https://doi.org/10.1016/j.bios.2014.10.066

    Article  CAS  PubMed  Google Scholar 

  69. Zhuo Y, Yuan R, Chai Y-Q et al (2010) Functionalized SiO 2 labeled CA19-9 antibodies: A new strategy for signal amplification of antigen–antibody sensing processes. Analyst 135:2036–2042. https://doi.org/10.1039/C0AN00022A

    Article  CAS  PubMed  Google Scholar 

  70. Alarfaj NA, El-Tohamy MF, Oraby HF (2018) CA 19-9 Pancreatic Tumor Marker Fluorescence Immunosensing Detection via Immobilized Carbon Quantum Dots Conjugated Gold Nanocomposite. Int J Mol Sci 19:1162. https://doi.org/10.3390/ijms19041162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Vice President for Research and Technology of Ministry of Science, Research, and Technology of Iran for support of Samira Mansouri Majd postdoctoral program [grant number: 3/294449]. The research office of University of Kurdistan is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samira Mansouri Majd or Abdollah Salimi.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, H., Majd, S.M. & Salimi, A. Highly sensitive and selective detection of the pancreatic cancer biomarker CA 19-9 with the electrolyte-gated MoS2-based field-effect transistor immunosensor. Ionics 29, 3769–3779 (2023). https://doi.org/10.1007/s11581-023-05136-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05136-2

Keywords

Navigation