Log in

Expanded interlayer spacing of graphene oxide achieved by electrostatic cation intercalation towards superior sodium ion storage

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Graphite has been employed as anode material of lithium ion batteries due to its low cost, unique layered structure, and high conductivity; however, the small interlayer spacing and poor rate capability limit its application in sodium ion batteries. To address these issues, the interlayer spacing of graphene oxide (GO) was controllably enlarged through K+ and Ca2+ pillaring by the electrostatic interaction between the negatively charged GO sheets and the positively charged K+/Ca2+. The K+/Ca2+ pillared in the interlayers of GO can controllably expand the interlayer spacing from 0.78 to 1.01 nm by regulating the K+/Ca2+ concentrations. The K+/Ca2+-pillared GO (K+/Ca2+-GO) exhibits high Na+ ion storage performance because of expanded interlayer spacing, showing large Na+ ion diffusion coefficient (the largest DNa+ is 43.8 × 10−15 cm2 s−1) and high reversible specific capacity (199.3 mAh g−1 at 0.1 A g−1). Meanwhile, the 2D layered structure of GO is stabilized by the pillar effects of K+/Ca2+ to realize a superior cycle stability of Na+ insertion/extraction. The relations between the interlayer spacing of K+/Ca2+-GO and rate capability are studied and an optimum interlayer spacing of K+/Ca2+-GO for high rate Na+ storage (0.84 nm and 1.01 nm for K+-GO and Ca2+-GO) is obtained. The results provide an essential reference for design of high rate 2D energy storage materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu C, Gong L, **ao Y, Yuan Y, Bedford NM, **a Z, Ma L, Wu T, Lin Y, Connell JW, Reza SY, Lu J, Amine K, Dai L (2020) High-Performance, long-life, rechargeable Li-CO2 batteries based on a 3D holey graphene cathode implanted with single iron atoms. Adv Mater 32(16):1907436

    Article  CAS  Google Scholar 

  2. Shen L, Shi S, Roy S, Yin X, Liu W, Zhao Y (2020) Recent advances and optimization strategies on the electrolytes for hard carbon and P-based sodium-ion batteries. Adv Funct Mater 31(4):2006066

    Article  CAS  Google Scholar 

  3. Stark MS, Kuntz KL, Martens SJ, Warren SC (2019) Intercalation of layered materials from bulk to 2D. Adv Mater 31(27):1808213

    Article  CAS  Google Scholar 

  4. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  CAS  PubMed  Google Scholar 

  5. **ng W, Yuan B, Wang X, Hu Y (2017) Enhanced mechanical properties, water stability and repeatable shape recovery behavior of Ca2+ crosslinking graphene oxide-based nacre-mimicking hybrid film. Mater Design 115(5):46–51

    Article  CAS  Google Scholar 

  6. Luo XF, Yang CH, Peng YY, Pu NW, Ger MD, Hsieh CT, Chang JK (2015) Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries. J Mater Chem A 3(19):10320–10326

    Article  CAS  Google Scholar 

  7. Yang S, Dong W, Shen D, Li S, Sun W, Hong X, Wang M, Mao Y (2017) Composite of nonexpansion reduced graphite oxide and carbon derived from pitch as anodes of Na-ion batteries with high coulombic efficiency. Chem Eng J 309(1):674–681

    Article  CAS  Google Scholar 

  8. Zhang Y, **a X, Liu B, Deng S, **e D, Liu Q, Wang Y, Wu J, Wang X, Tu J (2019) Multiscale graphene-based materials for applications in sodium ion batteries. Adv Energy Mater 9(8):1803342

    Article  CAS  Google Scholar 

  9. Gao C, Feng J, Dai J, Pan Y, Zhu Y, Wang W, Dong Y, Cao L, Guan L, Pan L, Hu H, Wu M (2019) Manipulation of interlayer spacing and surface charge of carbon nanosheets for robust lithium/sodium storage. Carbon 153:372–380

    Article  CAS  Google Scholar 

  10. Zhao S, Zhang HB, Luo JQ, Wang QW, Xu B, Hong S, Yu ZZZ (2018) Highly electrically conductive three-dimensional Ti3C2Tx MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11):11193–11202

    Article  CAS  PubMed  Google Scholar 

  11. Yang F, Hong J, Hao J, Zhang S, Liang G, Long J, Liu Y, Liu N, Pang WK, Chen J, Guo Z (2020) Ultrathin few-layer GeP nanosheets via lithiation-assisted chemical exfoliation and their application in sodium storage. Adv Energy Mater 10(14):1903826

    Article  CAS  Google Scholar 

  12. Liang X, Liu R, Wu X (2020) Biomass waste derived functionalized hierarchical porous carbon with high gravimetric and volumetric capacitances for supercapacitors. Micropor Mesopor Mater 310:110659

    Article  CAS  Google Scholar 

  13. Shang M, Zhang J, Liu X, Liu Y, Guo S, Yu S, Filatov S, Yi X (2021) N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors. Appl Surf Sci 542:148697

    Article  CAS  Google Scholar 

  14. Zhang BM, Zhang YS, Liu MC, Li J, Lu C, Gu B, Liu MJ, Hu YX, Zhao K, Liu WW, Niu WJ, Kong LB, Chueh YL (2021) Chemical welding of diamine molecules in graphene oxide nanosheets: design of precisely controlled interlayer spacings with the fast Li+ diffusion coefficient toward high-performance storage application. Electrochim Acta 380(1):138114

    Article  CAS  Google Scholar 

  15. Zhang YS, Zhang BM, Hu YX, Li J, Lu C, Liu MJ, Wang K, Kong LB, Zhao CZ, Niu WJ, Liu WW, Zhao K, Liu MC, Chueh YL (2020) Diamine molecules double lock-link structured graphene oxide sheets for high-performance sodium ions storage. Energy Storage Mater 34:45–52

    Article  CAS  Google Scholar 

  16. Yeo HJ, Paik Y, Paek SM, Honma I (2012) Keggin-type aluminum polyoxocation/graphene oxide hybrid as a new nanostructured electrode for a lithium ion battery. J Phys Chem Solids 73(12):1417–1419

    Article  CAS  Google Scholar 

  17. Cai Q, Wang J, Jiao Y, Li T, **a Y, Li M, Yang Y, Wu G, Zou J, Hu J, Dong A, Yang D (2021) All-graphitic multilaminate mesoporous membranes by interlayer-confined molecular assembly. Small 17(24):2101173

    Article  CAS  Google Scholar 

  18. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y (2017) Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 27(30):1701264

    Article  CAS  Google Scholar 

  19. Song F, Zhang R, Zhang X, Qin J, Liu R (2020) Ni-Co double hydroxide grown on graphene oxide for enhancing lithium ion storage. Energy Fuels 34(10):13032–13037

    Article  CAS  Google Scholar 

  20. Zhang M, Wei Z, Wang T, Muhammad S, Zhou J, Liu J, Zhu J, Hu J (2019) Nickel-iron layered double hydroxides and reduced graphene oxide composite with robust lithium ion adsorption ability for high-capacity energy storage systems. Electrochim Acta 296(10):190–197

    Article  CAS  Google Scholar 

  21. Vafakhah S, Saeedikhani M, Huang S, Dong Y, Yi LZ, Wang Y, Hou L, Guo L, Alvarado PVY, Yang HY (2021) Tungsten disulfide-reduced GO/CNT aerogel: a tuned interlayer spacing anode for efficient water desalination. J Mater Chem A 9(17):10758–10768

    Article  CAS  Google Scholar 

  22. Fu Y, Dai Y, Pei X, Lyu S, Heng Y, Mo D (2019) TiO2 nanorods anchor on reduced graphene oxide (R-TiO2/rGO) composite as anode for high performance lithium-ion batteries. Appl Surf Sci 497(15):143553

    Article  CAS  Google Scholar 

  23. Pyo S, Eom W, Kim YJ, Lee SH, Han TH, Ryu WH (2020) Super-expansion of assembled reduced graphene oxide interlayers by segregation of Al nanoparticle pillars for high-capacity Na-ion battery anodes. ACS Appl Mater Inter 12(21):23781–23788

    Article  CAS  Google Scholar 

  24. Kim YJ, Pyo S, Kim S, Ryu WH (2021) Group VI metallic pillars for assembly of expanded graphite anodes for high-capacity Na-ion batteries. Carbon 175:585–593

    Article  CAS  Google Scholar 

  25. Chen C, Li NW, Zhang XY, Zhang CH, Qiu JS, Yu L (2022) Interlayer-expanded titanate hierarchical hollow spheres embedded in carbon nanofibers for enhanced Na storage. Small 18(16):2107890

    Article  CAS  Google Scholar 

  26. Wang YX, Wang YW, Liu JL, Pan L, Tian W, Wu M, Qiu JS (2017) Preparation of carbon nanosheets from petroleum asphalt via recyclable molten-salt method for superior lithium and sodium storage. Carbon 122:344–351

    Article  CAS  Google Scholar 

  27. Liu YC, Phillips B, Li W, Zhang ZM, Fang L, Qiu JJ, Wang SR (2018) Fullerene-tailored graphene oxide interlayer spacing for energy-efficient water desalination. ACS Appl Energy Mater 1(11):6168–6175

    Article  CAS  Google Scholar 

  28. Chen JS, **a YF, Yang J (2018) Graphene/surfactant-assisted synthesis of edge-terminated molybdenum disulfide with enlarged interlayer spacing. Mater Lett 210:248–251

    Article  CAS  Google Scholar 

  29. Qian YL, Zhang XL, Liu CY, Zhou C, Huang AS (2019) Tuning interlayer spacing of graphene oxide membranes with enhanced desalination performance. Desalination 460:56–63

    Article  CAS  Google Scholar 

  30. Liu MC, Zhang BM, Zhang YS, Gu BN, Tian CY, Zhang DT, Wang YQ, Zhao B, Wang YY, Liu MJ, Yu YJ, Zhao K, Kong LB, Chueh YL (2021) Regulating interlayer spacing with pillar- and strain-structures in Ti3C2 MXene layers by molecular welding for superior alkali-metal ions storage. Mater Today Energy 22:100832

    Article  CAS  Google Scholar 

  31. Liu MC, Zhang BM, Zhang YS, Hu YX (2021) Diacid molecules welding achieved self-adaption layered structure Ti3C2 MXene toward fast and stable lithium-ion storage. ACS Sustain Chem Eng 9(38):12930–12939

    Article  CAS  Google Scholar 

  32. Liu MC, Zhang YS, Zhang BM, Zhang DT, Tian CY, Kong LB, Hu YX (2021) Large interlayer spacing 2D Ta4C3 matrix supported 2D MoS2 nanosheets: a 3D heterostructure composite towards high-performance sodium ions storage. Renew Energy 169:573–581

    Article  CAS  Google Scholar 

  33. Zhang DT, Liu MC, Li J, Zhang YS, Zhang BM, Lu C, Hu YX, Wu KP, Kong LB (2021) Design of kinetic well-matched Mo2C nanoparticles anchored into 3D hierarchical porous carbon towards high-rate sodium ion storage. Electrochim Acta 372(5):137860

    Article  CAS  Google Scholar 

  34. Li ZT, Zhou JY, Xu RF, Liu SP, Wang YK, Li P, Wu WT, Wu MB (2016) Synthesis of three dimensional extended conjugated polyimide and application as sodium-ion battery anode. Chem Eng J 287:516–522

    Article  CAS  Google Scholar 

  35. Hsieh CT, Hsu SM, Lin JY, Teng HS (2011) Electrochemical capacitors based on graphene oxide sheets using different aqueous electrolytes. J Phys Chem C 115(25):12367–12374

    Article  CAS  Google Scholar 

  36. Le Z, Liu F, Nie P, Li X, Liu X, Bian Z, Chen G, Wu HB, Lu Y (2017) Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11(3):2952–2960

    Article  CAS  PubMed  Google Scholar 

  37. Wang Q, Wang Y, Zhang X, Wang G, Ji P, Yin F (2018) WSe2/reduced graphene oxide Nanocomposite with superfast sodium ion storage ability as anode for sodium ion capacitors. J Electrochem Soc 165(16):A3642–A3647

    Article  CAS  Google Scholar 

  38. Tong Z, Liu S, Zhou Y, Zhao J, Wu Y, Wang Y, Li Y (2017) Rapid redox kinetics in uniform sandwich-structured mesoporous Nb2O5/graphene/mesoporous Nb2O5 nanosheets for high-performance sodium-ion supercapacitors. Energy Storage Mater 13:223–232

    Article  Google Scholar 

  39. Lim E, Jo C, Kim MS, Kim MH, Chun J, Kim H, Park J, Roh KC, Kang K, Yoon S, Lee J (2016) High-performance sodium-ion hybrid supercapacitor based on Nb2O5@Carbon core-shell Nanoparticles and reduced graphene oxide nanocomposites. Adv Funct Mater 26(21):3711–3719

    Article  CAS  Google Scholar 

  40. Roh HK, Kim MS, Chung KY, Ulaganathan M, Aravindan V, Madhavi S, Roh KC, Kim KB (2017) Chemically bonded NaTi2(PO4)3/rGO microsphere composite as high-rate insertion anode for sodium-ion capacitor. J Mater Chem A 5(33):17506–17516

    Article  CAS  Google Scholar 

  41. Dong J, Jiang Y, Li Q, Wei Q, Yang W, Tan S, Xu X, An Q, Mai L (2017) Pseudocapacitive titanium oxynitride mesoporous nanowires with iso-oriented nanocrystals for ultrahigh-rate sodium ion hybrid capacitors. J Mater Chem A 5(22):10827–10835

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (No. 52062030) and Applied Basic Research of Qinghai Province (2021-ZJ-737).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fu-Ling Tang or Mao-Cheng Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, YX., Zhang, DT., Tang, FL. et al. Expanded interlayer spacing of graphene oxide achieved by electrostatic cation intercalation towards superior sodium ion storage. Ionics 28, 3833–3842 (2022). https://doi.org/10.1007/s11581-022-04636-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04636-x

Keywords

Navigation