Log in

Introduction of amorphous TiO2 coating layer to improve the lithium storage of SiO2 nanospheres anode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Silicon dioxide (SiO2) is considered a promising candidate to replace commercial graphite anodes in lithium-ion batteries (LIBs). However, poor electrical conductivity and drastic volume swing hinder it from practical applications. Smart surface coatings have been shown to be good examples of dramatically improved SiO2 cycling performance. Herein, a SiO2@amorphous TiO2 (SiO2@a-TiO2) composite with core–shell structure was synthesized via a facile sol–gel method. The amorphous TiO2 shell shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. The resulting materials serve as LIBs anodes with superior lithium storage properties in terms of high initial capacity (1125 m Ah g−1 at 0.1 A g−1), good rate capability (387 m Ah g−1 at 2 A g−1), and excellent cycling stability (582 m Ah g−1 was retained over 300 cycles at 0.1 A g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feng HG, **e P, Xue SL, Li LW, Hou X, Liu ZY, Wu DJ, Wang LW, Chu PK (2018) Synthesis of three-dimensional porous reduced graphene oxide hydrogel/carbon dots for high-performance supercapacitor. J Electroanal Chem 808:321–328

    Article  CAS  Google Scholar 

  2. Zhao WC, Li SS, Yao HF, Zhang SQ, Zhang Y, Yang B, Hou JH (2017) Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc 139:7148–7151

    Article  CAS  Google Scholar 

  3. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614

    Article  CAS  Google Scholar 

  4. Zheng C, He C, Zhang H, Wang W, Lei X (2014) TiO2 reduced graphene oxide nanocomposite for high-rate application of lithium ion batteries. Ionics 21:51–583

    Article  Google Scholar 

  5. Yang ZY, Yuan YF, Zhu M, Yin SM, Cheng JP, Guo SY (2021) Superior rate-capability and long-lifespan carbon nanotube-in-nanotube@Sb2S3 anode for lithium-ion storage. J Mater Chem A 9:22334–22346

    Article  CAS  Google Scholar 

  6. Kim YM, Ahn J, Yu SH, Chung DY, Lee KJ, Lee JL, Sung YE (2015) Titanium silicide coated porous silicon nanospheres as anode materials for lithium ion batteries. Electrochim Acta 151:256–262

    Article  CAS  Google Scholar 

  7. Sohn H, Kim DH, Yi R, Tang D, Lee SE, Jung YS, Wang D (2016) Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries. J Power Sources 334:128–136

    Article  CAS  Google Scholar 

  8. Yu Y, Zhan ZH, Xu QY, Shen K (2020) Dual stabilized architecture of Si@SiO2/N-doped carbon composite synthesized via oxygen plasma method as anode for high-performance LIBs. Chem Lett 49:423–427

    Article  CAS  Google Scholar 

  9. Wu W, Wang M, Wang J, Wang CY, Deng YH (2020) Green design of Si/SiO2/C composites as high-performance anodes for lithium-ion batteries. ACS Appl Energy Mater 3:3884–3892

    Article  CAS  Google Scholar 

  10. Nan D, Wang JG, Huang ZH, Wang L, Shen WC, Kang FY (2013) Highly porous carbon nanofibers from electrospun polyimide/SiO2 hybrids as an improved anode for lithium-ion batteries. Electrochem Commun 34:52–55

    Article  CAS  Google Scholar 

  11. Zheng H, Wang ZY, Shi LY, Zhao Y, Yuan S (2019) Enhanced thermal stability and lithium ion conductivity of polyethylene separator by coating colloidal SiO2 nanoparticles with porous shell. J Colloid Interface Sci 554:29–38

    Article  CAS  Google Scholar 

  12. Wu JH, Zuo XX, Chen QY, Deng X, Liang HY, Zhu TM, Liu JS, Li WJ, Nan JM (2019) Electrochim Acta 320:134567

    Article  CAS  Google Scholar 

  13. Ensafi AA, Abarghoui MM, Rezaei B (2017) Metal (Ni and Bi) coated porous silicon nanostructure, high-performance anode materials for lithium ion batteries with high capacity and stability. J Alloys Compd 712:233–240

    Article  CAS  Google Scholar 

  14. **ang Z, Chen Y, Li J, **a X, He Y, Liu H (2017) Submicro-sized porous SiO2/C and SiO2/C/graphene spheres for lithium ion batteries. J Solid State Electrochem 21:2425–2432

    Article  CAS  Google Scholar 

  15. Wang J, Hou X, Zhang M, Li Y, Wu Y, Liu X, Hu S (2016) 3-Aminopropyltriethoxysilane-assisted Si@SiO2/CNTs hybrid microspheres as superior anode materials for Li-ion batteries. SILICON 9:97–104

    Article  Google Scholar 

  16. Jiang YH, Wen J, Ding ZW, Ren Y, Liu Z, Chen X, Zhou XW (2021) Li+ storage properties of SiO2@C core-shell submicrosphere and its hollow counterpart synthesized by molecular self-assembly in wet chemistry condition as anodes for LIBs. J Alloys Compd 861:157932

    Article  CAS  Google Scholar 

  17. Dong XY, Zheng X, Deng YC, Wang LF, Hong HP, Ju ZC (2020) SiO2/N-doped graphene aerogel composite anode for lithium-ion batteries. J Mater Sci 55:13023–13035

    Article  CAS  Google Scholar 

  18. Chen H, Hou X, Chen F, Wang S, Bo W, Qiang R (2018) Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon 130:433–440

    Article  CAS  Google Scholar 

  19. Shen X, Tian Z, Fan R, Shao L, Zhang D, Cao G, Kou L, Bai Y (2018) Research progress on silicon/carbon composite anode materials for lithium-ion battery. J Energy Chem 27:1067–1090

    Article  Google Scholar 

  20. Fang R, **ao W, Miao C, Mei P, Zhang Y, Yan XM, Jiang Y (2019) Enhanced lithium storage performance of core-shell structural Si@TiO2/NC composite anode via facile sol-gel and in situ N-doped carbon coating processes. Electrochim Acta 317:575–582

    Article  CAS  Google Scholar 

  21. Majeed MK, Saleem A, Ma XJ, Ma WZ (2020) Clay-derived mesoporous Si/rGO for anode material of lithium-ion batteries. J Alloys Compd 848:156590

    Article  CAS  Google Scholar 

  22. **ao ZX, Yu CH, Lin XQ, Chen X, Zhang CX, Jiang HR, Zhang RF, Wei F (2020) TiO2 as a multifunction coating layer to enhance the electrochemical performance of SiOx@TiO2@C composite as anode material. Nano Energy 77:105082

    Article  CAS  Google Scholar 

  23. Feng K, Li M, Liu W, Kashkooli AG, **ao X, Cai M, Chen Z (2018) Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14:1702737

    Article  Google Scholar 

  24. Zhu Y, Hu W, Zhou J, Cai W, Lu Y, Liang J, Li X, Zhu S, Fu Q, Qian Y (2019) Prelithiated surface oxide layer enabled high-performance Si anode for lithium storage. ACS Appl Mater Inter 11:18305–18312

    Article  CAS  Google Scholar 

  25. Su J, Zhao J, Li L, Zhang C, Chen C, Huang T, Yu A (2017) Three-dimensional porous Si and SiO2 with in situ decorated carbon nanotubes as anode materials for Li-ion batteries. ACS Appl Mater Inter 9:17807–17813

    Article  CAS  Google Scholar 

  26. Liang J, Han X, Li Y, Ye K, Hou C, Yu K (2015) Fabrication of TiO2 hollow nanocrystals through the nanoscale Kirkendall effect for lithium-ion batteries and photocatalysis. New J Chem 39:3145–3149

    Article  CAS  Google Scholar 

  27. Yuan YF, Zhao WC, Chen L, Cai GS, Guo SY (2021) CoO hierarchical mesoporous nanospheres@TiO2@C for high-performance lithium-ion storage. Appl Surf Sci 556:149810

    Article  CAS  Google Scholar 

  28. Majeed MK, Ma G, Cao Y, Mao H, Ma X, Ma W (2019) Metal-organic frameworks derived mesoporous Si/SiOx@NC nanospheres as a long-lifespan anode material for lithium-ion batteries. Chem Eur J 25:11991–11997

    Article  CAS  Google Scholar 

  29. Lee G, Kim S, Kim S, Choi J (2017) SiO2/TiO2 composite film for high capacity and excellent cycling stability in lithium-ion battery anodes. Adv Funct Mater 27:1703538

    Article  Google Scholar 

  30. Lv P, Zhao H, Wang J, Liu X, Zhang T, **a Q (2013) Facile preparation and electrochemical properties of amorphous SiO2/C composite as anode material for lithium ion batteries. J Power Sources 237:291–294

    Article  CAS  Google Scholar 

  31. Smith KA, Savva AI, Mao KYS, Wang YQ, Tenne DA, Chen D, Liu YZ, Barnes P, Deng CJ, Butt DP, Wharry JP, **ong H (2019) Effect of proton irradiation on anatase TiO2 nanotube anodes for lithium-ion batteries. J Mater Sci 54:13221–13235

    Article  CAS  Google Scholar 

  32. Subasi Y, Somer M, Yagci MB, Slabon A, Afyon S (2020) Surface modified TiO2/reduced graphite oxide nanocomposite anodes for lithium ion batteries. J Solid State Electrochem 24:1085–1093

    Article  CAS  Google Scholar 

  33. Shen Y, Cao Z, Wu Y, Cheng Y, Xue H, Zou Y, Liu G, Yin D, Cavallo L, Wang L, Ming J (2020) Catalysis of silica-based anode (de-)lithiation: compositional design within a hollow structure for accelerated conversion reaction kinetics. J Mater Chem 8:12306–12313

    Article  CAS  Google Scholar 

  34. Wang H, Cai W, Wang S, Li B, Yang Y, Li Y, Wu QH (2020) Fabrication of helical SiO2@Fe-N doped C nanofibers and their applications as stable lithium ion battery anodes and superior oxygen reduction reaction catalysts. Electrochim Acta 342:136107

    Article  CAS  Google Scholar 

  35. Ali S, Jaffer S, Maitlo I, Shehzad FK, Wang Q, Ali S, Akram MY, He Y, Nie J (2020) Photo cured 3D porous silica-carbon (SiO2-C) membrane as anode material for high performance rechargeable Li-ion batteries. J Alloys Compd 812:152127

    Article  CAS  Google Scholar 

  36. Yang JP, Wang YX, Li W, Wang LJ, Fan YC, Jiang W, Luo W, Wang Y, Kong B, Selomulya C, Liu HK, Dou SX, Zhao DY (2017) Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high performance and safe lithium storage. Adv Mater 29:1700523

    Article  Google Scholar 

  37. Zhang J, Liang Y, Zhou Q, Peng Y, Yang H (2015) Enhancing electrochemical properties of silicon-graphite anodes by the introduction of cobalt for lithium ion batteries. J Power Sources 290:71–79

    Article  CAS  Google Scholar 

  38. Yuan YF, Chen Q, Zhu M, Cai GS, Guo SY (2021) Nano tube-in-tube CNT@void@TiO2@C with excellent ultrahigh rate capability and long cycling stability for lithium ion storage. J Alloys Compd 851:156795

    Article  CAS  Google Scholar 

  39. Zhou N, Wu YF, Li YR, Yang JK, Zhou Q, Guo YW, **a M, Zhou Z (2020) Interconnected structure Si@TiO2-B/CNTs composite anode applied for high-energy lithium-ion batteries. Appl Surf Sci 500:144026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61604094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguang Zhai.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 731 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, M., Zhai, J., Zeng, P. et al. Introduction of amorphous TiO2 coating layer to improve the lithium storage of SiO2 nanospheres anode. Ionics 28, 1081–1089 (2022). https://doi.org/10.1007/s11581-021-04435-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04435-w

Keywords

Navigation