Log in

Notoginseng-derived B/N co-doped porous carbon with high N-doped content and good electrochemical performance

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Biomass is regarded as the ideal carbon sources for the preparation of porous carbons owing to its abundance, environmental friendliness, and facile availability. Herein a novel biomass, notoginseng, is used as the carbon source for synthesizing a novel B/N co-doped porous carbon (BNC) via one-step carbonization/activation procedure with the presence of copper chloride and boric acid. It is found that utilization of copper chloride and boric acid to fulfill one-step activation not only promotes the fixation of heteroatom-containing species but also facilitates formation of abundant micropores and mesopores in the carbon matrix. The as-prepared BNC sample thus exhibits developed porosity, large specific surface area (982 m2 g–1), and plentiful heteroatom dopants (e.g., N, 10.51 at.%; O, 15.38 at.%; B, 0.7 at.%). Investigation of supercapacitive performance reveals that the BNC electrode holds a delightful capacitance of 261 F g–1 at 0.5 A g–1 and a good rate capacitance of 172.8 F g–1 at 10 A g–1 in 6 M KOH electrolyte; and its symmetric supercapacitor exhibits excellent cyclic performance (capacitance retention, 93.2%) during 10,000 cycles at 5 A g–1, and a moderate energy output of 6.16 W h kg–1 at 100.12 W kg–1. These findings indicate that the notoginseng-derived porous carbon is a promising electrode material for supercapacitors due to its simple preparation method and superior electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhou L, Zhuang Z, Zhao H, Lin M, Zhao D, Mai L (2017) Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv Mater 29:1602914–1602942

    Article  Google Scholar 

  2. Lin T, Chen I, Liu F, Yang C, Bi H, Xu F, Huang F (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350:1508–1513

    Article  PubMed  CAS  Google Scholar 

  3. ** H, Li J, Yuan Y, Wang J, Lu J, Wang S (2018) Recent progress in biomass-derived electrode materials for high volumetric performance supercapacitors. Adv Energy Mater 8:1801007–1801018

    Article  Google Scholar 

  4. Wang Y, Qu Q, Gao S, Tang G, Liu K, He S, Huang C (2019) Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 155:706–726

    Article  CAS  Google Scholar 

  5. Wang K, Xun Q, Zhang Q (2020) Recent progress in metal-organic frameworks as active materials for supercapacitors. EnergyChem 2:100025

    Article  Google Scholar 

  6. Zhang L, Zhang F, Yang X, Leng K, Huang Y, Chen Y (2013) High-performance supercapacitor electrode materials prepared from various pollens. Small 9:1342–1347

    Article  PubMed  CAS  Google Scholar 

  7. Qing Y, Jiang Y, Lin H, Wang L, Liu A, Cao Y, Sheng R, Guo Y, Fan C, Zhang S, Jia D, Fan Z (2019) Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots. J Mater Chem A 7:6021–6027

    Article  CAS  Google Scholar 

  8. Tran C, Lawrence D, Richey FW, Dillard C, Elabd YA, Kalra V (2015) Binder-free three-dimensional high energy density electrodes for ionic-liquid supercapacitors. Chem Commun 51:13760–13763

    Article  CAS  Google Scholar 

  9. Jiang X, Shi G, Wang G, Mishra P, Du J, Zhang Y (2020) Fe2O3/hemp straw-based porous carbon composite for supercapacitor electrode materials. Ionics 26:4039–4051

    Article  CAS  Google Scholar 

  10. Meng W, Chen W, Zhao L, Huang Y, Zhu M, Huang Y, Fu Y, Geng F, Yu J, Chen X, Zhi C (2014) Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. Nano Energy 8:133–140

    Article  CAS  Google Scholar 

  11. Zhang X, Hou S, Ding Z, Zhu G, Tang H, Hou Y, Lu T, Pan L (2020) Carbon wrapped CoP hollow spheres for high performance hybrid supercapacitor. J Alloys Compd 822:153578–153587

    Article  CAS  Google Scholar 

  12. Dong X, ** H, Wang R, Zhang J, Feng X, Yan C, Chen S, Wang S, Wang J, Lu J (2018) High volumetric capacitance, ultralong life supercapacitors enabled by waxberry-derived hierarchical porous carbon materials. Adv Energy Mater 8:1702695–1702701

    Article  Google Scholar 

  13. Ling Z, Wang G, Zhang M, Fan X, Yu C, Yang J, **ao N, Qiu J (2015) Boric acid-mediated B,N-codoped chitosan-derived porous carbons with a high surface area and greatly improved supercapacitor performance. Nanoscale 7:5120–5125

    Article  PubMed  CAS  Google Scholar 

  14. Li Y, Zheng S, Liu X, Li P, Sun L, Yang R, Wang S, Wu ZS, Bao X, Deng W (2018) Conductive microporous covalent triazine-based framework for high-performance electrochemical capacitive energy storage. Angew Chem Int Ed 57:7992–7996

    Article  CAS  Google Scholar 

  15. Sui Z, Liu W, Xu X, Liu Y, Tian Q (2020) Nitrogen-doped porous carbons with high surface area for capacitive deionization. Diam Relat Mater 104:107758–107764

    Article  CAS  Google Scholar 

  16. Song Z, Miao L, Li L, Zhu D, Lv Y, **ong W, Duan H, Wang Z, Gan L, Liu M (2020) A universal strategy to obtain highly redox-active porous carbons for efficient energy storage. J Mater Chem A 8:3717–3725

    Article  CAS  Google Scholar 

  17. Li H, Li J, Thomas A, Liao Y (2019) Ultra–high surface area nitrogen–doped carbon aerogels derived from a Schiff–base porous organic polymer aerogel for CO2 storage and supercapacitors. Adv Funct Mater 29:1904785–1904793

    Article  Google Scholar 

  18. Deng X, Zhao B, Zhu L, Shao Z (2015) Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon 93:48–58

    Article  CAS  Google Scholar 

  19. Chen L, Ji T, Mu L, Zhu J (2017) Cotton fabric derived hierarchically porous carbon and nitrogen do** for sustainable capacitor electrode. Carbon 111:839–848

    Article  CAS  Google Scholar 

  20. Wang M, Liu B, Chen H, Yang D, Li H (2019) N/O codoped porous carbons with layered structure for high-rate performance supercapacitors. ACS Sustain Chem Eng 7:11219–11227

    Article  CAS  Google Scholar 

  21. Xu B, Zheng D, Jia M, Cao G, Yang Y (2013) Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors. Electrochim Acta 98:176–182

    Article  CAS  Google Scholar 

  22. Guo D, Mi J, Hao G, Dong W, **ong G, Li W, Lu A-H (2013) Ionic liquid C16mimBF4 assisted synthesis of poly(benzoxazine-co-resol)-based hierarchically porous carbons with superior performance in supercapacitors. Energy Environ Sci 6:652–659

    Article  CAS  Google Scholar 

  23. Yuan C, Liu X, Jia M, Luo Z, Yao J (2015) Facile preparation of N- and O-doped hollow carbon spheres derived from poly(o-phenylenediamine) for supercapacitors. J Mater Chem A 3:3409–3415

    Article  CAS  Google Scholar 

  24. Li J, Luo F, Lin T, Yang J, Yang S, He D, **ao D, Liu W (2020) Pomelo peel-based N, O-codoped hierarchical porous carbon material for supercapacitor application. Chem Phys Lett 753:137597–137611

    Article  CAS  Google Scholar 

  25. Yu W, Wang H, Liu S, Mao N, Liu X, Shi J, Liu W, Chen S, Wang X (2016) N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A 4:5973–5983

    Article  CAS  Google Scholar 

  26. Zhang S, Tian K, Cheng B-H, Jiang H (2017) Preparation of N-doped supercapacitor materials by integrated salt templating and silicon hard templating by pyrolysis of biomass wastes. ACS Sustain Chem Eng 5:6682–6691

    Article  CAS  Google Scholar 

  27. Liu S, Liang Y, Zhou W, Hu W, Dong H, Zheng M, Hu H, Lei B, **ao Y, Liu Y (2018) Large-scale synthesis of porous carbon via one-step CuCl2 activation of rape pollen for high-performance supercapacitors. J Mater Chem A 6:12046–12055

    Article  CAS  Google Scholar 

  28. Li Y, Liu S, Liang Y, **ao Y, Dong H, Zheng M, Hu H, Liu Y (2019) Bark-based 3D porous carbon nanosheet with ultrahigh surface area for high performance supercapacitor electrode material. ACS Sustain Chem Eng 7:13827–13835

    Article  CAS  Google Scholar 

  29. Qiu S, Chen Z, Zhuo H, Hu Y, Liu Q, Peng X, Zhong L (2019) Using FeCl3 as a solvent, template, and activator to prepare B, N co-do** porous carbon with excellent supercapacitance. ACS Sustain Chem Eng 7:15983–15994

    Article  CAS  Google Scholar 

  30. Lehtimaki S, Railanmaa A, Keskinen J, Kujala M, Tuukkanen S, Lupo D (2017) Performance, stability and operation voltage optimization of screen-printed aqueous supercapacitors. Sci Rep 7:46001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Han X, Jiang H, Zhou Y, Hong W, Zhou Y, Gao P, Ding R, Liu E (2018) A high performance nitrogen-doped porous activated carbon for supercapacitor derived from pueraria. J Alloys Compd 744:544–551

    Article  CAS  Google Scholar 

  32. Zheng L, Tang B, Dai X, **ng T, Ouyang Y, Wang Y, Chang B, Shu H, Wang X (2020) High-yield synthesis of N-rich polymer-derived porous carbon with nanorod-like structure and ultrahigh N-doped content for high-performance supercapacitors. Chem Eng J 399:125671–125681

    Article  CAS  Google Scholar 

  33. Zhou H, Zhou Y, Li L, Li Y, Liu X, Zhao P, Gao B (2019) Amino acid protic ionic liquids: multifunctional carbon precursor for N/S codoped hierarchically porous carbon materials toward supercapacitive energy storage. ACS Sustain Chem Eng 7:9281–9290

    Article  CAS  Google Scholar 

  34. Abudu P, Wang L, Xu M, Jia D, Wang X, Jia L (2018) Hierarchical porous carbon materials derived from petroleum pitch for high-performance supercapacitors. Chem Phys Lett 702:1–7

    Article  CAS  Google Scholar 

  35. Li H, Sui Z (2019) An in situ coupling strategy for the preparation of heterometal-doped carbon frameworks as efficient bifunctional ORR/OER electrocatalysts. New J Chem 43:17963–17973

    Article  CAS  Google Scholar 

  36. Liu Y, **ang C, Chu H, Qiu S, McLeod J, She Z, Xu F, Sun L, Zou Y (2020) Binary Co–Ni oxide nanoparticle-loaded hierarchical graphitic porous carbon for high-performance supercapacitors. J Mater Sci Technol 37:135–142

    Article  Google Scholar 

  37. Ma Y, Wu D, Wang T, Jia D (2019) Nitrogen, Phosphorus Co-doped carbon obtained from amino acid based resin xerogel as efficient electrode for supercapacitor. ACS Appl Mater Interfaces 3:957–969

    Google Scholar 

  38. Tang B, Zheng L, Dai X, Chen H (2019) Nitrogen/oxygen co-doped porous carbons derived from a facilely-synthesized Schiff-base polymer for high-performance supercapacitor. J Energy Storage 26:100961–100970

    Article  Google Scholar 

  39. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna P (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  PubMed  CAS  Google Scholar 

  40. Zheng S, Li Q, Xue H, Pang H, Xu Q (2020) A highly alkaline-stable metal oxide@metal–organic framework composite for high-performance electrochemical energy storage. Natl Sci Rev 7:305–314

  41. Wu Z, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Mullen K (2012) Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 24:5130–5135

    Article  PubMed  CAS  Google Scholar 

  42. Hu F, Zhang T, Wang J, Li S, Liu C, Song C, Shao W, Liu S, Jian X (2020) Constructing N, O-containing micro/mesoporous covalent triazine-based frameworks toward a detailed analysis of the combined effect of N, O heteroatoms on electrochemical performance. Nano Energy 74:104789–104798

    Article  CAS  Google Scholar 

  43. Sun F, Qu Z, Gao J, Wu H, Liu F, Han R, Wang L, Pei T, Zhao G, Lu Y (2018) In situ do** boron atoms into porous carbon nanoparticles with increased oxygen graft enhances both affinity and durability toward electrolyte for greatly improved supercapacitive performance. Adv Funct Mater 28:1804190–1804199

    Article  Google Scholar 

  44. Iyyamperumal E, Wang S, Dai L (2012) Vertically aligned BCN nanotubes with high capacitance. ACS Nano 6:5259–5265

    Article  PubMed  CAS  Google Scholar 

  45. Li L, Li L, Cui C, Fan H, Wang R (2017) Heteroatom-doped carbon spheres from hierarchical hollow covalent organic framework precursors for metal-free catalysis. ChemSusChem 10:4921–4926

    Article  PubMed  CAS  Google Scholar 

  46. Lu Z, Wang J, Huang S, Hou Y, Li Y, Zhao Y, Mu S, Zhang J, Zhao Y (2017) N,B-codoped defect-rich graphitic carbon nanocages as high performance multifunctional electrocatalysts. Nano Energy 42:334–340

    Article  CAS  Google Scholar 

  47. Huang S, Li Z, Wang B, Zhang J, Peng Z, Qi R, Wang J, Zhao Y (2018) N-do** and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv Funct Mater 28:1706294–1706321

    Article  Google Scholar 

  48. Arkhipova EA, Ivanov AS, Strokova NE, Chernyak SA, Shumyantsev AV, Maslakov KI, Savilov SV, Lunin VV (2017) Structural evolution of nitrogen-doped carbon nanotubes: from synthesis and oxidation to thermal defunctionalization. Carbon 125:20–31

    Article  CAS  Google Scholar 

  49. Guo D, Ding B, Hu X, Wang Y, Han F, Wu X (2018) Synthesis of boron and nitrogen codoped porous carbon foam for high performance supercapacitors. ACS Sustain Chem Eng 6:11441–11449

    Article  CAS  Google Scholar 

  50. Ma G, Yang Q, Sun K, Peng H, Ran F, Zhao X, Lei Z (2015) Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour Technol 197:137–142

    Article  CAS  Google Scholar 

  51. Lin G, Ma R, Zhou Y, Liu Q, Dong X, Wang J (2018) KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction. Electrochim Acta 261:49–57

    Article  CAS  Google Scholar 

  52. Qu J, Geng C, Lv S, Shao G, Ma S, Wu M (2015) Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors. Electrochim Acta 176:982–988

    Article  CAS  Google Scholar 

  53. Qu H, Zhang X, Zhan J, Sun W, Si Z, Chen H (2018) Biomass-based nitrogen-doped hollow carbon nanospheres derived directly from glucose and glucosamine: structural evolution and supercapacitor properties. ACS Sustain Chem Eng 6:7380–7389

    Article  CAS  Google Scholar 

  54. Liu Y, Cao L, Luo J, Peng Y, Ji Q, Dai J, Zhu J, Liu X (2018) Biobased nitrogen- and oxygen-codoped carbon materials for high-performance supercapacitor. ACS Sustain Chem Eng 7:2763–2773

    Article  Google Scholar 

  55. Zhi L, Li T, Yu H, Chen S, Dang L, Xu H, Shi F, Liu Z, Lei Z (2017) Hierarchical graphene network sandwiched by a thin carbon layer for capacitive energy storage. Carbon 113:100–107

    Article  CAS  Google Scholar 

  56. Yuan W, Liu J, Yi W, Liang L, Zhu Y, Chen X (2020) Boron and nitrogen co-doped double-layered mesopore-rich hollow carbon microspheres as high-performance electrodes for supercapacitors. J Colloid Interface Sci 573:232–240

    Article  PubMed  CAS  Google Scholar 

  57. Wang J, Yang T, Zeng Z, Deng S (2018) Facilely prepared N, O-codoped nanosheet derived from pre-functionalized polymer as supercapacitor electrodes. Chem Phys 506:17–25

    Article  CAS  Google Scholar 

  58. Yu M, Han Y, Li J, Wang L (2017) CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors. Chem Eng J 317:493–502

    Article  CAS  Google Scholar 

  59. Su D, Liu J, Pei Y, Liu L, Nie S, Zhang Y, **a J, Yan H, Yuan Y, Wang X (2021) Electrospun Na doped Li2TiSiO5/C nanofibers with outstanding lithium-storage performance. Appl Surf Sci 541:148388

    Article  CAS  Google Scholar 

  60. Xu J, Du G, **e L, Yuan K, Zhu Y, Xu L, Li N, Wang X (2020) Three-dimensional walnut-like, hierarchically nanoporous carbon microspheres: one-pot synthesis, activation, and supercapacitive performance. ACS Sustain Chem Eng 8:8024–8036

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support obtained from the Science and Technology Planning Project of Hunan Province (2017RS3048) and the Hunan Provincial Natural Science Foundation of China (2018JJ1024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li** Zheng or Huajie Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/XXXX.

ESM 1

(DOCX 1324 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Zheng, L., Tang, B. et al. Notoginseng-derived B/N co-doped porous carbon with high N-doped content and good electrochemical performance. Ionics 27, 1439–1449 (2021). https://doi.org/10.1007/s11581-021-03932-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03932-2

Keywords

Navigation