Log in

Fe3O4/functional exfoliation graphene on carbon paper nanocomposites for supercapacitor electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, the commercial carbon paper was firstly peeled in K2CO3 solution and then was further treated in a KNO3 solution to form functional exfoliation graphene (FEG) on the commercial carbon paper. The FEG/carbon paper was characterized by Raman spectra and scanning electron microscopy, confirming that some typical layered fold graphenes were successfully peeled off and stood on the carbon paper matrix. Then, Fe3O4 nanoparticles (NPs) were grown on the surface of FEG/carbon paper and the as-prepared Fe3O4 NPs/FEG/carbon paper was directly used as supercapacitor electrode. The specific capacitance of Fe3O4 NPs/FEG/carbon paper was about 316.07 F g−1 at a current density of 1 A g−1. Furthermore, the FEG/carbon papers were also functionalized by benzene carboxylic acid to form FFEG/carbon papers, and then the Fe3O4 NPs were grown on the surface of FFEG/carbon paper. The specific capacitance of Fe3O4 NPs/FFEG/carbon paper was 470 F g−1 at a current density of 1 A g−1, superior to some previous reported results. This work might provide a new strategy to prepare various nanostructures on FFEG/carbon papers for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. CJ H, Song L, Zhang ZP, Chen N, Feng ZH, LT Q (2015) Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energy Environ Sci 8:31–54

    Article  CAS  Google Scholar 

  2. Liu M, Ma XM, Gan LH, ZJ X, Zhu DZ, Chen LW (2014) A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries. J Mater Chem A 2(40):17107–17114. https://doi.org/10.1039/C4TA02888K

    Article  CAS  Google Scholar 

  3. Liu CG, ZN Y, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10(12):4863–4868. https://doi.org/10.1021/nl102661q

    Article  CAS  PubMed  Google Scholar 

  4. Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, Chen YS (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113(30):13103–13107. https://doi.org/10.1021/jp902214f

    Article  CAS  Google Scholar 

  5. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531. https://doi.org/10.1039/b813846j

    Article  CAS  PubMed  Google Scholar 

  6. Tang C, Pu ZH, Liu Q, Asiri AM, Sun XP, Luo YL, He YQ (2015) In situ growth of NiSe nanowire film on nickel foam as an electrode for high-performance supercapacitors. ChemElectroChem 2(12):1903–1907. https://doi.org/10.1002/celc.201500285

    Article  CAS  Google Scholar 

  7. Hou JH, Cao CB, Idrees F, Ma XL (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9(3):2556–2564. https://doi.org/10.1021/nn506394r

    Article  CAS  PubMed  Google Scholar 

  8. Liu D, Zeng C, DY Q, Tang HL, Li Y, BL S, DY Q (2016) Highly efficient synthesis of ordered nitrogen-doped mesoporous carbons with tunable properties and its application in high performance supercapacitors. J Power Sources 321:143–154. https://doi.org/10.1016/j.jpowsour.2016.04.129

    Article  CAS  Google Scholar 

  9. Zhao YH, Liu MX, Deng XX, Miao L, Tripathi PK, Ma XM, Zhu DZ, ZJ X, Hao ZX, Gan LH (2015) Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode. Electrochim Acta 153:448–455. https://doi.org/10.1016/j.electacta.2014.11.173

    Article  CAS  Google Scholar 

  10. Liu S, Guo SJ, Sun SH, You XZ (2015) Dumbbell-like Au-Fe3O4 nanoparticles: a new nanostructure for supercapacitors. Nano 7:4890–4893

    CAS  Google Scholar 

  11. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9(15):1774–1785. https://doi.org/10.1039/b618139m

    Article  CAS  PubMed  Google Scholar 

  12. Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8(12):1805–1834. https://doi.org/10.1002/smll.201102635

    Article  CAS  PubMed  Google Scholar 

  13. Dai L, Chang DW, Baek JB, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8(8):1130–1166. https://doi.org/10.1002/smll.201101594

    Article  CAS  PubMed  Google Scholar 

  14. Jiang H, Lee PS, Li C (2012) 3D carbon based nanostructures for advanced supercapacitors. Energy Environ Sci 6:41–53

    Article  Google Scholar 

  15. Zhang Z, **ao F, Guo Y, Wang S, Liu Y (2013) One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl Mater Inter 5(6):2227–2233. https://doi.org/10.1021/am303299r

    Article  CAS  Google Scholar 

  16. Zhang Z, **ao F, Qian L, **ao J, Wang S, Liu Y (2014) Facile synthesis of 3D MnO2–graphene and carbon nanotube–graphene composite networks for high-performance, flexible, all-solid-state asymmetric supercapacitors. Adv Energy Mater 4:1400064

    Article  CAS  Google Scholar 

  17. Zhang Z, **ao F, Wang S (2015) Hierarchically structured MnO2/graphene/carbon fiber and porous graphene hydrogel wrapped copper wire for fiber-based flexible all-solid-state asymmetric supercapacitors. J Mater Chem A 3(21):11215–11223. https://doi.org/10.1039/C5TA02331A

    Article  CAS  Google Scholar 

  18. Zhang Z, **ao F, **ao J, Wang S (2015) Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors. J Mater Chem A 3(22):11817–11823. https://doi.org/10.1039/C5TA01990G

    Article  CAS  Google Scholar 

  19. Zhang Z, Chi K, **ao F, Wang S (2015) Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO2 and graphene/polypyrrole hybrid architectures. J Mater Chem A 3(24):12828–12835. https://doi.org/10.1039/C5TA02685G

    Article  CAS  Google Scholar 

  20. Sun Y, **ng Z, Jiang S, Zhang H, Wei G, Li Z, Zhang X (2016) Rapid preparation of crosslinked N-doped graphene by burning method for high-performance electrochemical capacitors. Electrochim Acta 192:243–250. https://doi.org/10.1016/j.electacta.2016.01.198

    Article  CAS  Google Scholar 

  21. Purwidyantri A, Chen CH, Hwang BJ, Luo JD, Chiou CC, Tian YC, Lai CS (2016) Spin-coated Au-nanohole arrays engineered by nanosphere lithography for a Staphylococcus aureus 16S rRNA electrochemical sensor. Biosens Bioelectron 77:1086–1094. https://doi.org/10.1016/j.bios.2015.10.094

    Article  CAS  PubMed  Google Scholar 

  22. Liu YL, ** ZH, Liu YH, XB H, Qin Y, JQ X, Huang WH (2016) Stretchable electrochemical sensor for real-time monitoring of cells and tissues. Angew Chem 128(14):4613–4617. https://doi.org/10.1002/ange.201601276

    Article  Google Scholar 

  23. Jiang GP, Goledzinowski M, Comeau FJE, Zarrin H, Lui G, Lenos J, Qiao J (2016) Free-standing functionalized graphene oxide solid electrolytes in electrochemical gas sensors. Adv Funct Mater 26(11):1729–1736. https://doi.org/10.1002/adfm.201504604

    Article  CAS  Google Scholar 

  24. Nguyen TT, Deivasigamani RK, Kharismadewi D, Iwai Y, Shim JJ (2016) Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications. Solid State Sci 53:71–77. https://doi.org/10.1016/j.solidstatesciences.2016.01.006

    Article  CAS  Google Scholar 

  25. Wang Y, Zhang S, Bai W, Zheng J (2016) Layer-by-layer assembly of copper nanoparticles and manganese dioxide-multiwalled carbon nanotubes film: a new nonenzymatic electrochemical sensor for glucose. Talanta 149:211–216. https://doi.org/10.1016/j.talanta.2015.11.040

    Article  CAS  PubMed  Google Scholar 

  26. Zaidi SA, Shin JH (2016) Recent developments in nanostructure based electrochemical glucose sensors. Talanta 149:30–42. https://doi.org/10.1016/j.talanta.2015.11.033

    Article  CAS  PubMed  Google Scholar 

  27. Sun JY, Liu Y, Lv S, Huang Z, Cui L, Wu T (2016) An electrochemical sensor based on nitrogen-doped carbon nanofiber for bisphenol A determination. Electroanalysis 28(3):439–444. https://doi.org/10.1002/elan.201500287

    Article  CAS  Google Scholar 

  28. Bakker E, Telting-Diaz M (2002) Electrochemical sensors. Anal Chem 74(12):2781–2800. https://doi.org/10.1021/ac0202278

    Article  CAS  PubMed  Google Scholar 

  29. Reisberg S, Piro B, Noel V, Noël V, Pham MC (2005) DNA electrochemical sensor based on conducting polymer: dependence of the “signal-on” detection on the probe sequence localization. Anal Chem 77(10):3351–3356. https://doi.org/10.1021/ac050080v

    Article  CAS  PubMed  Google Scholar 

  30. Dobbelin M, Ciesielski A, Haar S, Haar S, Osella S, Bruna M, Minoia A, De Cola L (2016) Light-enhanced liquid-phase exfoliation and current photoswitching in graphene-azobenzene composites. Nat Commun 7:11090. https://doi.org/10.1038/ncomms11090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haar S, El Gemayel M, Shin Y, Melinte G, Squillaci MA, Ersen O, Samorì P (2015) Enhancing the liquid-phase exfoliation of graphene in organic solvents upon addition of noctylbenzene. Sci Rep 5(1):16684. https://doi.org/10.1038/srep16684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li F, Shi JJ, Qin X (2010) Synthesis and supercapacitor characteristics of PANI/CNTs composites. Chinese sci bull 55(11):1100–1106. https://doi.org/10.1007/s11434-009-0573-9

    Article  CAS  Google Scholar 

  33. Hu L, Tu J, Jiao S, Hou J, Zhu H, Fray DJ (2012) In situ electrochemical polymerization of a nanorod-PANI-graphene composite in a reverse micelle electrolyte and its application in a supercapacitor. Phys Chem Chem Phys 14(45):15652–15656. https://doi.org/10.1039/c2cp42192e

    Article  CAS  PubMed  Google Scholar 

  34. Du X, Wang C, Chen M, Jiao Y, Wang J (2016) Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. J Phys Chem C 113:2643–2646

    Article  CAS  Google Scholar 

  35. Li L, Dou Y, Wang L, Luo M, Liang J (2014) One-step synthesis of high-quality N-doped graphene/Fe3O4 hybrid nanocomposite and its improved supercapacitor performances. RSC Adv 4(49):25658–25665. https://doi.org/10.1039/C4RA02962C

    Article  CAS  Google Scholar 

  36. Oh I, Kim M, Kim J (2015) Fe3O4/carbon coated silicon ternary hybrid composite as supercapacitor electrodes. Appl Surf Sci 328:222–228. https://doi.org/10.1016/j.apsusc.2014.12.066

    Article  CAS  Google Scholar 

  37. Liao Q, Li N, ** S, Yang G, Wang C (2015) All-solid-state symmetric supercapacitor based on Co3O4 nanoparticles on vertically aligned graphene. ACS Nano 9(5):5310–5317. https://doi.org/10.1021/acsnano.5b00821

    Article  CAS  PubMed  Google Scholar 

  38. Liu W, Li X, Zhu M, He X (2015) High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J Power Sources 282:179–186. https://doi.org/10.1016/j.jpowsour.2015.02.047

    Article  CAS  Google Scholar 

  39. Wang L, Ji H, Wang S, Kong L, Jiang X, Yang G (2013) Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nano 5:3793–3799

    CAS  Google Scholar 

  40. Wang L, Yu J, Dong X, Li X, **e Y, Chen S, Li P, Hou H, Song Y (2016) Three-dimensional macroporous carbon/Fe3O4-doped porous carbon nanorods for high-performance supercapacitor. ACS Sustain Chem Eng 4(3):1531–1537. https://doi.org/10.1021/acssuschemeng.5b01474

    Article  CAS  Google Scholar 

  41. Wang L, Zhang Y, Li X, **e Y, He J, Yu J, Song Y (2015) The MIL-88A-derived Fe3O4-carbon hierarchical nanocomposites for electrochemical sensing. Sci Rep 5(1):14341. https://doi.org/10.1038/srep14341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Song Y, JL X, Liu XX (2014) Electrochemical anchoring of dual do** polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode. J Power Sources 249:48–58. https://doi.org/10.1016/j.jpowsour.2013.10.102

    Article  CAS  Google Scholar 

  43. Lang L, Xu Z (2013) In situ synthesis of porous Fe3O4/C microbelts and their enhanced electrochemical performance for lithium-ion batteries. ACS Applied Mater Inter 5(5):1698–1703. https://doi.org/10.1021/am302753p

    Article  CAS  Google Scholar 

  44. Pardieu E, Pronkin SN, Dolci M, Dintzer T, Pichon BP, Begin D, Boulmedais F (2015) Hybrid layer-by-layer composites based on conducting polyelectrolyte and Fe3O4 nanostructures grafted on graphene for supercapacitors application. J Mater Chem A 3(45):22877–22885. https://doi.org/10.1039/C5TA05132K

    Article  CAS  Google Scholar 

  45. Yan F, Ding J, Liu Y, Wang Z, Cai Q, Zhang J (2015) Fabrication of magnetic irregular hexagonal-Fe3O4, sheets/reduced graphene oxide composite for supercapacitors. Synthetic Met 209:473–479. https://doi.org/10.1016/j.synthmet.2015.08.023

    Article  CAS  Google Scholar 

  46. Li F, Chen H, Liu XY, Zhu SJ, Jia JQ, CH X, Zhang YX (2015) Low-cost high-performance asymmetric supercapacitors based on Co2AlO4@MnO2 nanosheets and Fe3O4 nanoflakes. J Mater Chem A 4:2096–2104

    Article  CAS  Google Scholar 

  47. Zeng X, Yang B, Li X, Li R, Yu R (2016) Solvothermal synthesis of hollow Fe3O4 sub-micron spheres and their enhanced electrochemical properties for supercapacitors. Mater Design 101:35–43. https://doi.org/10.1016/j.matdes.2016.03.155

    Article  CAS  Google Scholar 

  48. Liu J, Liu S, Zhuang S, Wang X, Tu F (2013) Synthesis of carbon-coated Fe3O4 nanorods as electrode material for supercapacitor. Ionics 19(9):1255–1261. https://doi.org/10.1007/s11581-013-0857-6

    Article  CAS  Google Scholar 

  49. Mu J, Chen B, Guo Z, Zhang M, Zhang Z, Zhang P, Shao C, Liu Y (2011) Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials. Nano 3:5034–5040

    CAS  Google Scholar 

  50. Shi W, Zhu J, Sim D, Tay Y, Lu Z, Zhang X, Sharma Y, Srinivasan M, Zhang H (2011) Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J Mater Chem 21(10):3422–3427. https://doi.org/10.1039/c0jm03175e

    Article  CAS  Google Scholar 

  51. Khoh W, Hong J (2013) Layer-by-layer self-assembly of ultrathin multilayer films composed of magnetite/reduced graphene oxide bilayers for supercapacitor application. Colloids Surf A Physicochem Eng Asp 436:104–112. https://doi.org/10.1016/j.colsurfa.2013.06.012

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (21465014, and 21765009), the Natural Science Foundation of Jiangxi Province (20143ACB21016), and the Ground Plan of Science and Technology Projects of Jiangxi Educational Committee (KJLD14023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Electronic supplementary material

ESM 1

(DOC 701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yu, J., Chen, S. et al. Fe3O4/functional exfoliation graphene on carbon paper nanocomposites for supercapacitor electrode. Ionics 24, 2697–2704 (2018). https://doi.org/10.1007/s11581-017-2409-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2409-y

Keywords

Navigation