Log in

Graphene-Co/CoO shaddock peel-derived carbon foam hybrid as anode materials for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A novel graphene (G)-Co/CoO shaddock peel-derived carbon foam (SPDCF) hybrid was fabricated as anode materials for lithium-ion batteries. The preparation of G-Co/CoO SPDCF was according to the following two steps. Firstly, the dried shaddock peels were immersed into the mixture of Co(NO3)2/graphene oxide for about 12 h. Then, the shaddock peels were taken out and heated at 800 °C for 2 h under N2 atmosphere. The strategy is simple, low-cost, and environmentally friendly because the shaddock peel is abundant and renewable. The obtained G-Co/CoO SPDCF hybrid were carefully characterized by SEM, EDS, XPS, XRD, TGA, BET, TEM, and electrochemical techniques. The results showed that the carbonized shaddock peels had hierarchical porous nanoflakes structures and graphene was uniformly dispersed into the SPDCF. The nanosized Co/CoO was formed on the G-SPDCF. The resulted G-Co/CoO SPDCF hybrid could maintain a high capacity of 600 mA h g−1 at 0.2 A g−1 after 80 cycles, which was much higher than that of commercial graphite (372 mA h g−1). The enhanced performance might be ascribed to the existence of lots of uniform Co/CoO and the hierarchical G-SPDCF alleviating the mechanical stress during the process of lithiation/delithiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ge X, Li Z, Wang C, Yin L (2015) Metal–organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery. ACS Appl Mater Interfaces 7:26633–26642

    Article  CAS  Google Scholar 

  2. Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457

    Article  CAS  Google Scholar 

  3. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262

    Article  CAS  Google Scholar 

  4. Rui X, Tan H, Sim D, Liu W, Xu C, Hng HH, Yazami R, Lim TM, Yan Q (2013) Template-free synthesis of urchin-like Co3O4 hollow spheres with good lithium storage properties. J Power Sources 222:97–102

    Article  CAS  Google Scholar 

  5. Banerjee A, Singh U, Aravindan V, Srinivasan M, Ogale S (2013) Synthesis of CuO nanostructures from Cu-based metal organic framework (MOF-199) for application as anode for Li-ion batteries. Nano Energy 2:1158–1163

    Article  CAS  Google Scholar 

  6. Li W, Wu X, Han N, Chen J, Qian X, Deng Y, Tang W, Chen Y (2016) MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance. Sensors Actuator B: Chemical 225:158–166

    Article  CAS  Google Scholar 

  7. Zheng F, Yang Y, Chen Q (2014) High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun 5:5261

    Article  CAS  Google Scholar 

  8. Ji L, Tan Z, Kuykendall TR, Aloni S, Xun S, Lin E, Battaglia V, Zhang Y (2011) Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells. Phys Chem Chem Phys 13:7170–7177

    Article  CAS  Google Scholar 

  9. Zhang K, Han P, Gu L, Zhang L, Liu Z, Kong Q, Zhang C, Dong S, Zhang Z, Yao J, Xu H, Cui G, Chen L (2012) Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl Mater Interfaces 4:658–664

    Article  CAS  Google Scholar 

  10. Su P, **ao H, Zhao J, Yao Y, Shao Z, Li C, Yang Q (2013) Nitrogen-doped carbon nanotubes derived from Zn-Fe-ZIF nanospheres and their application as efficient oxygen reduction electrocatalysts with in situ generated iron species. Chem Sci 4:2941–2946

    Article  CAS  Google Scholar 

  11. Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313

    Article  CAS  Google Scholar 

  12. Song Y, Zuo L, Chen S, Wu J, Hou H, Wang L (2015) Porous nano-si/carbon derived from zeolitic imidazolate frameworks@ nano-si as anode materials for lithium-ion batteries. Electrochim Acta 173:588–594

    Article  CAS  Google Scholar 

  13. Tan Y, Zhu K, Li D, Bai F, Wei Y, Zhang P (2014) N-doped graphene/Fe–Fe3C nano-composite synthesized by a Fe-based metal organic framework and its anode performance in lithium ion batteries. Chem Eng J 258:93–100

    Article  CAS  Google Scholar 

  14. Liu H, Li W, Shen D, Zhao D, Wang G (2015) Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J Am Chem Soc 137:13161–13166

    Article  CAS  Google Scholar 

  15. Jiang C, Lin X (2009) Electrochemical synthesis of Fe3O4-PB nanoparticles with core-shell structure and its electrocatalytic reduction toward H2O2. J Solid State Electrochem 13:1273–1278

    Article  CAS  Google Scholar 

  16. Chen T, Hu Y, Cheng B, Chen R, Lv H, Ma L, Zhu G, Wang Y, Yan C, Tie Z, ** Z, Liu J (2016) Multi-yolk-shell copper oxide@ carbon octahedra as high-stability anodes for lithium-ion batteries. Nano Energy 20:305–314

    Article  CAS  Google Scholar 

  17. Wang L, Zheng Y, Wang X, Chen S, Xu F, Zuo L, Wu J, Sun L, Li Z, Hou H, Song Y (2014) Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 6:7117–7125

    Article  CAS  Google Scholar 

  18. Wu J, Zuo L, Song Y, Chen Y, Zhou R, Chen S, Wang L (2016) Preparation of biomass-derived hierarchically porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. J Alloy Compd 656:745–752

    Article  CAS  Google Scholar 

  19. Wang L, Zheng Y, Zhang Q, Zuo L, Chen S, Chen S, Hou H, Song Y (2014) Template-free synthesis of hierarchical porous carbon derived from low-cost biomass for high-performance supercapacitors. RSC Adv 4:51072–51079

    Article  CAS  Google Scholar 

  20. Zhou X, Shi J, Liu Y, Su Q, Zhang J, Du G (2014) Microwave-assisted synthesis of hollow CuO–Cu2O nanosphere/graphene composite as anode for lithium-ion battery. J Alloy Compd 615:390–394

    Article  CAS  Google Scholar 

  21. Wang X, Yang Z, Sun X, Li X, Wang D, Wang P, He D (2011) NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries. J Mater Chem 21:9988–9990

    Article  CAS  Google Scholar 

  22. Wang J, Liu W, Chen J, Wang H, Liu S, Chen S (2016) Biotemplated MnO/C microtubes from spirogyra with improved electrochemical performance for lithium-ion batterys. Electrochim Acta 188:210–217

    Article  CAS  Google Scholar 

  23. **a Y, **ao Z, Dou X, Huang H, Lu X, Yan R, Gan Y, Zhu W, Tu J, Zhang W, Tao X (2013) Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano 7:7083–7092

    Article  CAS  Google Scholar 

  24. Shim HW, ** YH, Seo SD, Lee SH, Kim DW (2011) Highly reversible lithium storage in bacillus subtilis-directed porous Co3O4 nanostructures. ACS Nano 5:443–449

    Article  CAS  Google Scholar 

  25. Li F, Ren M, Liu W, Li G, Li M, Su L, Gao C, Hei J, Yang H (2017) Sea urchin-like CoO/Co/N-doped carbon matrix hybrid composites with superior high-rate performance for lithium-ion batteries. J Alloy Compd 701:524–532

    Article  CAS  Google Scholar 

  26. Qin Y, Li Q, Xu J, Wang X, Zhao G, Liu C, Yan X, Long Y, Yan S, Li S (2017) CoO-Co nanocomposite anode with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta 224:90–95

    Article  CAS  Google Scholar 

  27. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  28. Wu FD, Wang Y (2011) Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@ CNT for lithium-ion batteries. J Mater Chem 21:6636–6641

    Article  CAS  Google Scholar 

  29. Zhao S, Guo J, Jiang F, Su Q, Zhang J, Du G (2016) Growth of hierarchal porous CoO nanowire arrays on carbon cloth as binder-free anodes for high-performance flexible lithium-ion batteries. J Alloy Compd 655:372–377

    Article  CAS  Google Scholar 

  30. Zhang P, Wang R, He M, Lang J, Xu S, Yan X (2016) 3D hierarchical Co/CoO-graphene-carbonized melamine foam as a superior cathode toward long-life lithium oxygen batteries. Adv Funct Mater 26:1354–1364

    Article  CAS  Google Scholar 

  31. Zhang L, Hu P, Zhao X, Tian R, Zou R, **a D (2011) Controllable synthesis of core–shell Co@ CoO nanocomposites with a superior performance as an anode material for lithium-ion batteries. J Mater Chem 21:18279–18283

    Article  CAS  Google Scholar 

  32. Song Y, Chen Y, Wu J, Fu Y, Zhou R, Chen S, Wang L (2017) Hollow metal organic frameworks-derived porous ZnO/C nanocages as anode materials for lithium-ion batteries. J Alloy Compd 694:1246–1253

    Article  CAS  Google Scholar 

  33. Ma C, Zhang W, He YS, Gong Q, Che H, Ma ZF (2016) Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries. Nano 8:4121–4126

    CAS  Google Scholar 

  34. **a Y, Wang H (2016) NiCo2O4 polyhedra with controllable particle size as high-performance anode for lithium-ion battery. Ionics 22:159–166

    Article  CAS  Google Scholar 

  35. Chen Y, Wu J, Yang W, Fu Y, Zhou R, Chen S, Zhang L, Song Y, Wang L (2016) Zn/Fe-MOFs-derived hierarchical ball-in-ball ZnO/ZnFe2O4@ carbon nanospheres with exceptional lithium storage performance. J Alloy Compd 688:211–218

    Article  CAS  Google Scholar 

  36. Chen S, Wu J, Zhou R, Zuo L, Li P, Song Y, Wang L (2015) Porous carbon spheres doped with Fe3C as an anode for high-rate lithium-ion batteries. Electrochim Acta 180:78–85

    Article  CAS  Google Scholar 

  37. Chen S, Chen Y, Zhou R, Wu J, Song Y, Li P, Song Y, Wang L (2016) Preparation of porous MnO@C core-shell nanowires as anodes for lithium-ion batteries. J Nanomater 2016:1–6

    Google Scholar 

  38. Drese JH, Choi S, Lively RP, Koros WJ, Fauth DJ, Gray ML, Jones CW (2009) Synthesis–structure–property relationships for hyperbranched aminosilica CO2 adsorbents. Adv Funct Mater 19:3821–3832

    Article  CAS  Google Scholar 

  39. Yuan W, Zhang J, **e D, Dong Z, Su Q, Du G (2013) Porous CoO/C polyhedra as anode material for Li-ion batteries. Electrochim Acta 108:506–511

    Article  CAS  Google Scholar 

  40. Li C, Chen T, Xu W, Lou X, Pan L, Chen Q, Hu B (2015) Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries. J Mater Chem A 3:5585–5591

    Article  CAS  Google Scholar 

  41. Zhang P, Guo ZP, Huang Y, Jia D, Liu HK (2011) Synthesis of Co3O4/carbon composite nanowires and their electrochemical properties. J Power Sources 196:6987–6991

    Article  CAS  Google Scholar 

  42. Zhang M, Wang Y, Jia M (2014) Three-dimensional reduced graphene oxides hydrogel anchored with ultrafine CoO nanoparticles as anode for lithium ion batteries. Electrochim Acta 129:425–432

    Article  CAS  Google Scholar 

  43. Sun L, Deng Q, Li Y, Mi H, Wang S, Deng L, Ren X, Zhang P (2017) CoO-Co3O4 heterostructure nanoribbon/RGO sandwich-like composites as anode materials for high performance lithium-ion batteries. Electrochim Acta 241:252–260

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (21465014, 21665012, and 21465015), the Science and Technology Support Program of Jiangxi Province (20123BBE50104 and 20133BBE50008), the Natural Science Foundation of Jiangxi Province (20143ACB21016), and the Ground Plan of Science and Technology Projects of Jiangxi Educational Committee (KJLD14023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Electronic supplementary material

ESM 1

(DOC 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Chen, Y., Fu, Y. et al. Graphene-Co/CoO shaddock peel-derived carbon foam hybrid as anode materials for lithium-ion batteries. Ionics 24, 1321–1328 (2018). https://doi.org/10.1007/s11581-017-2294-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2294-4

Keywords

Navigation