Log in

Hedgehog Pathway Inhibition for the Treatment of Basal Cell Carcinoma

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Globally, basal cell carcinoma is the most commonly diagnosed cancer. While most cases are amenable to surgery, treatment options for advanced basal cell carcinoma, including locally advanced basal cell carcinoma and metastatic basal cell carcinoma, have proved more difficult. Recent advances regarding the role of hedgehog signaling in the pathogenesis of basal cell carcinoma and the identification of hedgehog pathway inhibitors have facilitated the development of treatment options with improved clinical outcomes. The hedgehog signaling pathway regulates development, cell proliferation, and tissue repair. The pathway is tightly regulated under normal physiological conditions. However, dysregulated hedgehog signaling in human cancers was first described in patients with basal cell carcinoma nevus syndrome and sporadic basal cell carcinoma, in which germline or somatic mutations in pathway components (e.g., smoothened [Smo] and patched-1) lead to constant activation. Subsequently, inhibitors blocking hedgehog signaling either at the level of Smo (i.e., vismodegib, sonidegib, patidegib, and itraconazole) or via an unknown mode of action (arsenic trioxide) were identified. The hedgehog inhibitor vismodegib is approved for the treatment of locally advanced basal cell carcinoma and metastatic basal cell carcinoma while sonidegib is approved for the treatment of locally advanced basal cell carcinoma in the USA and Europe; and for locally advanced basal cell carcinoma and metastatic basal cell carcinoma in Switzerland and Australia. The most common treatment-emergent adverse events associated with approved hedgehog inhibitors include muscle spasms, dysgeusia, and alopecia. This review addresses the challenges associated with appropriately diagnosing locally advanced basal cell carcinoma, provides an overview of hedgehog signaling in basal cell carcinoma, and discusses the pharmacology of hedgehog inhibitors and their efficacy, and adverse events associated with hedgehog inhibitor use, and their management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tay EY, Teoh YL, Yeo MS. Hedgehog pathway inhibitors and their utility in basal cell carcinoma: a comprehensive review of current evidence. Dermatol Ther (Heidelb). 2019;9(1):33–49. https://doi.org/10.1007/s13555-018-0277-7.

    Article  PubMed  Google Scholar 

  2. Migden MR, Chang ALS, Dirix L, Stratigos AJ, Lear JT. Emerging trends in the treatment of advanced basal cell carcinoma. Cancer Treat Rev. 2018;64:1–10. https://doi.org/10.1016/j.ctrv.2017.12.009.

    Article  CAS  PubMed  Google Scholar 

  3. Cross SS, Bury JP. The hedgehog signalling pathways in human pathology. Curr Diagn Histopathol. 2004;10(2):157–68. https://doi.org/10.1016/j.cdip.2003.11.005.

    Article  Google Scholar 

  4. Pak E, Segal RA. Hedgehog signal transduction: key players, oncogenic drivers, and cancer therapy. Dev Cell. 2016;38(4):333–44. https://doi.org/10.1016/j.devcel.2016.07.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rimkus TK, Carpenter RL, Qasem S, Chan M, Lo H-W. Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers (Basel). 2016;8(2):22. https://doi.org/10.3390/cancers8020022.

    Article  CAS  PubMed Central  Google Scholar 

  6. Heo JS, Lee MY, Han HJ. Sonic hedgehog stimulates mouse embryonic stem cell proliferation by cooperation of Ca2+/protein kinase C and epidermal growth factor receptor as well as Gli1 activation. Stem Cells. 2007;25(12):3069–80. https://doi.org/10.1634/stemcells.2007-0550.

    Article  CAS  PubMed  Google Scholar 

  7. Amakye D, Jagani Z, Dorsch M. Unraveling the therapeutic potential of the hedgehog pathway in cancer. Nat Med. 2013;19(11):1410–22. https://doi.org/10.1038/nm.3389.

    Article  CAS  PubMed  Google Scholar 

  8. Aszterbaum M, Rothman A, Johnson RL, Fisher M, **e J, Bonifas JM, et al. Identification of mutations in the human PATCHED gene in sporadic basal cell carcinomas and in patients with the basal cell nevus syndrome. J Invest Dermatol. 1998;110(6):885–8. https://doi.org/10.1046/j.1523-1747.1998.00222.x.

    Article  CAS  PubMed  Google Scholar 

  9. Athar M, Li C, Kim AL, Spiegelman VS, Bickers DR. Sonic hedgehog signaling in basal cell nevus syndrome. Cancer Res. 2014;74(18):4967–75. https://doi.org/10.1158/0008-5472.can-14-1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. American Joint Committee on Cancer. AJCC cancer staging manual. 8th ed. Chicago: Springer International Publishing; 2018.

    Google Scholar 

  11. Lear JT, Corner C, Dziewulski P, Fife K, Ross GL, Varma S, et al. Challenges and new horizons in the management of advanced basal cell carcinoma: a UK perspective. Br J Cancer. 2014;111(8):1476–81. https://doi.org/10.1038/bjc.2014.270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hillen U, Ulrich M, Alter M, Becker JC, Gutzmer R, Leiter U, et al. Cutaneous squamous cell carcinoma: a review with consideration of special patient groups [in German]. Hautarzt. 2014;65(7):590–9.

    Article  CAS  PubMed  Google Scholar 

  13. Edge SB, Byrd DR, Compton CC, Firtz AG, Greene FL, Trotti A III. Cutaneous squamous cell carcinoma and other cutaneous carcinomas. In: Edge SB, Compton CC, editors. AJCC cancer staging manual. 7th ed. New York: Springer; 2010. p. 301–14.

    Google Scholar 

  14. Maly TJ, Sligh JE. Defining locally advanced basal cell carcinoma. J Drugs Dermatol. 2014;13(5):528–9.

    PubMed  Google Scholar 

  15. Fecher LA, Sharfman WH. Advanced basal cell carcinoma, the hedgehog pathway, and treatment options: role of smoothened inhibitors. Biologics. 2015;9:129–40. https://doi.org/10.2147/BTT.S54179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Amici JM, Battistella M, Beylot-Barry M, Chatelleir A, Dalac-Ra S. Defining and recognising locally advanced basal cell carcinoma. Eur J Dermatol. 2015;25(6):586–94.

    PubMed  Google Scholar 

  17. Maun HR, Wen X, Lingel A, de Sauvage FJ, Lazarus RA, Scales SJ, et al. Hedgehog pathway antagonist 5E1 binds hedgehog at the pseudo-active site. J Biol Chem. 2010;285(34):26570–80. https://doi.org/10.1074/jbc.M110.112284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim J, Tang JY, Gong R, Kim J, Lee JJ, Clemons KV, et al. Itraconazole, a commonly used anti-fungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell. 2010;17(4):388–99. https://doi.org/10.1016/j.ccr.2010.02.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP, et al. A paracrine requirement for hedgehog signalling in cancer. Nature. 2008;455(7211):406–10. https://doi.org/10.1038/nature07275. https://www.nature.com/articles/nature07275#supplementary-information.

  20. Whitson RJ, Lee A, Urman NM, Mirza A, Yao CY, Brown AS, et al. Noncanonical hedgehog pathway activation through SRF–MKL1 promotes drug resistance in basal cell carcinomas. Nat Med. 2018;24(3):271–81. https://doi.org/10.1038/nm.4476. https://www.nature.com/articles/nm.4476#supplementary-information.

  21. Teperino R, Amann S, Bayer M, McGee SL, Loipetzberger A, Connor T, et al. Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat. Cell. 2012;151(2):414–26. https://doi.org/10.1016/j.cell.2012.09.021.

    Article  CAS  PubMed  Google Scholar 

  22. Atwood SX, Chang AL, Oro AE. Hedgehog pathway inhibition and the race against tumor evolution. J Cell Biol. 2012;199(2):193–7. https://doi.org/10.1083/jcb.201207140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dentice M, Luongo C, Huang S, Ambrosio R, Elefante A, Mirebeau-Prunier D, et al. Sonic hedgehog-induced type 3 deiodinase blocks thyroid hormone action enhancing proliferation of normal and malignant keratinocytes. Proc Natl Acad Sci USA. 2007;104(36):14466–71. https://doi.org/10.1073/pnas.0706754104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hasegawa D, Ochiai-Shino H, Onodera S, Nakamura T, Saito A, Onda T, et al. Gorlin syndrome-derived induced pluripotent stem cells are hypersensitive to hedgehog-mediated osteogenic induction. PLoS One. 2017;12(10):e0186879. https://doi.org/10.1371/journal.pone.0186879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Evans DG, Oudit D, Smith MJ, Rutkowski D, Allan E, Newman WG, et al. First evidence of genotype–phenotype correlations in Gorlin syndrome. J Med Genet. 2017;54(8):530–6. https://doi.org/10.1136/jmedgenet-2017-104669.

    Article  CAS  PubMed  Google Scholar 

  26. Adolphe C, Hetherington R, Ellis T, Wainwright B. Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res. 2006;66(4):2081–8. https://doi.org/10.1158/0008-5472.CAN-05-2146.

    Article  CAS  PubMed  Google Scholar 

  27. Shih S, Urso BA, Domozych R, Updyke KM, Laughlin AI, Solomon JA. Chromosome 9 mutations reported absent in some patients with basal cell carcinoma nevus syndrome. J Eur Acad Dermatol Venereol. 2018;32(5):e179–81. https://doi.org/10.1111/jdv.14689.

    Article  CAS  PubMed  Google Scholar 

  28. **e J, Murone M, Luoh SM, Ryan A, Gu Q, Zhang C, et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature. 1998;391(6662):90–2. https://doi.org/10.1038/34201.

    Article  CAS  PubMed  Google Scholar 

  29. Callahan CA, Ofstad T, Horng L, Wang JK, Zhen HH, Coulombe PA, et al. MIM/BEG4, a Sonic hedgehog-responsive gene that potentiates Gli-dependent transcription. Genes Dev. 2004;18(22):2724–9. https://doi.org/10.1101/gad.1221804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shih S, Dai C, Ansari A, Urso BA, Laughlin AI, Solomon JA. Advances in genetic understanding of Gorlin syndrome and emerging treatment options. Expert Opin Orphan Drugs. 2018;6(7):413–23. https://doi.org/10.1080/21678707.2018.1483233.

    Article  CAS  Google Scholar 

  31. Yang SH, Andl T, Grachtchouk V, Wang A, Liu J, Syu LJ, et al. Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/beta3-catenin signaling. Nat Genet. 2008;40(9):1130–5. https://doi.org/10.1038/ng.192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cooper MK, Porter JA, Young KE, Beachy PA. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science. 1998;280(5369):1603–7. https://doi.org/10.1126/science.280.5369.1603.

    Article  CAS  PubMed  Google Scholar 

  33. Heretsch P, Tzagkaroulaki L, Giannis A. Cyclopamine and hedgehog signaling: chemistry, biology, medical perspectives. Angew Chem Int Ed Engl. 2010;49(20):3418–27. https://doi.org/10.1002/anie.200906967.

    Article  CAS  PubMed  Google Scholar 

  34. Tremblay MR, Lescarbeau A, Grogan MJ, Tan E, Lin G, Austad BC, et al. Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926). J Med Chem. 2009;52(14):4400–18. https://doi.org/10.1021/jm900305z.

    Article  CAS  PubMed  Google Scholar 

  35. Jimeno A, Weiss GJ, Miller WHJ, Gettinger S, Eigl BJC, Chang ALS, et al. Phase I study of the hedgehog pathway inhibitor IPI-926 in adult patients with solid tumors. Clin Cancer Res. 2013;19(10):2766–74. https://doi.org/10.1158/1078-0432.Ccr-12-3654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Robarge KD, Brunton SA, Castanedo GM, Cui Y, Dina MS, Goldsmith R, et al. GDC-0449: a potent inhibitor of the hedgehog pathway. Bioorg Med Chem Lett. 2009;19(19):5576–81. https://doi.org/10.1016/j.bmcl.2009.08.049.

    Article  CAS  PubMed  Google Scholar 

  37. Gould SE, Low JA, Marsters JCJ, Robarge K, Rubin LL, de Sauvage FJ, et al. Discovery and preclinical development of vismodegib. Expert Opin Drug Discov. 2014;9(8):969–84. https://doi.org/10.1517/17460441.2014.920816.

    Article  CAS  PubMed  Google Scholar 

  38. Pan S, Wu X, Jiang J, Gao W, Wan Y, Cheng D, et al. Discovery of NVP-LDE225, a potent and selective smoothened antagonist. ACS Med Chem Lett. 2010;1(3):130–4. https://doi.org/10.1021/ml1000307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Epstein EH, Lear J, Saldanha G, Tang JY, Harwood C. Hedgehog pathway inhibition by topical patidegib to reduce BCC burden in patients with basal cell nevus (Gorlin) syndrome. J Clin Oncol. 2018;36(15_Suppl.):e21626-e. https://doi.org/10.1200/jco.2018.36.15_suppl.e21626.

    Article  Google Scholar 

  40. Lauressergues E, Heusler P, Lestienne F, Troulier D, Rauly-Lestienne I, Tourette A, et al. Pharmacological evaluation of a series of smoothened antagonists in signaling pathways and after topical application in a depilated mouse model. Pharmacol Res Perspect. 2016;4(2):e00214. https://doi.org/10.1002/prp2.214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ueno H, Kondo S, Yoshikawa S, Inoue K, Andre V, Tajimi M, et al. A phase I and pharmacokinetic study of taladegib, a Smoothened inhibitor, in Japanese patients with advanced solid tumors. Invest New Drugs. 2018;36(4):647–56. https://doi.org/10.1007/s10637-017-0544-y.

    Article  CAS  PubMed  Google Scholar 

  42. Bendell JC, Andre VA, Ho AL, Kudchakar R, Migden MR, Infante JR, et al. Phase 1 study of LY2940680, a Smo antagonist, in patients with advanced cancer including treatment naive and previously treated basal cell carcinoma. Clin Cancer Res. 2018;24(9):2082–91. https://doi.org/10.1158/1078-0432.Ccr-17-0723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Erivedge®. US prescribing information. San Francisco (CA): Genentech. USA, Inc.; 2019.

  44. Odomzo®. US prescribing information. Cranbury (NJ): Sun Pharmaceutical Industries, Inc.; 2017.

  45. Wahid M, Jawed A, Dar SA, Mandal RK, Haque S. Differential pharmacology and clinical utility of sonidegib in advanced basal cell carcinoma. Onco Targets Ther. 2017;10:515–20. https://doi.org/10.2147/OTT.S97713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sporanox®: prescribing information. Beerse: Janssen Pharmaceuticals I, 2017.

  47. Sharma MR, Karrison TG, Kell B, Wu K, Turcich M, Geary D, et al. Evaluation of food effect on pharmacokinetics of vismodegib in advanced solid tumor patients. Clin Cancer Res. 2013;19(11):3059–67. https://doi.org/10.1158/1078-0432.CCR-12-3829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. European Medicines Agency. Odomzo: summary of product characteristics. London: European Medicines Agency; 2015.

    Google Scholar 

  49. Jain S, Song R, **e J. Sonidegib: mechanism of action, pharmacology, and clinical utility for advanced basal cell carcinomas. Onco Targets Ther. 2017;10:1645–53. https://doi.org/10.2147/OTT.S130910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Prentice AG, Glasmacher A. Making sense of itraconazole pharmacokinetics. J Antimicrob Chemother. 2005;56(Suppl_1):i17–22. https://doi.org/10.1093/jac/dki220.

    Article  CAS  PubMed  Google Scholar 

  51. Sekulic A, Migden MR, Basset-Seguin N, Garbe C, Gesierich A, Lao CD, et al. Long-term safety and efficacy of vismodegib in patients with advanced basal cell carcinoma: final update of the pivotal ERIVANCE BCC study. BMC Cancer. 2017;17(1):332. https://doi.org/10.1186/s12885-017-3286-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 2012;366(23):2171–9. https://doi.org/10.1056/NEJMoa1113713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lear JT, Migden MR, Lewis KD, Chang ALS, Guminski A, Gutzmer R, et al. Long-term efficacy and safety of sonidegib in patients with locally advanced and metastatic basal cell carcinoma: 30-month analysis of the randomized phase 2 BOLT study. J Eur Acad Dermatol Venereol. 2018;32(3):372–81. https://doi.org/10.1111/jdv.14542.

    Article  CAS  PubMed  Google Scholar 

  54. Ernst D. Patidegib gets breakthrough and orphan designation for Gorlin syndrome. 2017. Available from: https://www.empr.com/patidegib-gets-breakthrough-and-orphan-designation-for-gorlin-syndrome/printarticle/708449/. Accessed 6 Feb 2018.

  55. Basset-Séguin N, Hauschild A, Kunstfeld R, Grob J, Dréno B, Mortier L, et al. Vismodegib in patients with advanced basal cell carcinoma: primary analysis of STEVIE, an international, open-label trial. Eur J Cancer. 2017;86:334–48. https://doi.org/10.1016/j.ejca.2017.08.022.

    Article  CAS  PubMed  Google Scholar 

  56. Dréno B, Kunstfeld R, Hauschild A, Fosko S, Zloty D, Labeille B, et al. Two intermittent vismodegib dosing regimens in patients with multiple basal-cell carcinomas (MIKIE): a randomised, regimen-controlled, double-blind, phase 2 trial. Lancet Oncol. 2017;18(3):404–12. https://doi.org/10.1016/S1470-2045(17)30072-4.

    Article  CAS  PubMed  Google Scholar 

  57. Migden MR, Lewis KD. 42-month follow-up of sonidegib efficacy and safety in advanced basal cell carcinoma: final analysis from BOLT. J Clin Oncol. 2018;36(15_Suppl.):9551. https://doi.org/10.1200/jco.2018.36.15_suppl.9551.

    Article  Google Scholar 

  58. Dummer R, Guminski A, Gutzmer R, Dirix L, Lewis KD, Combemale P, et al. The 12-month analysis from Basal Cell Carcinoma Outcomes with LDE225 Treatment (BOLT): a phase II, randomized, double-blind study of sonidegib in patients with advanced basal cell carcinoma. J Am Acad Dermatol. 2016;75(1):113–25.e5. https://doi.org/10.1016/j.jaad.2016.02.1226.

    Article  CAS  PubMed  Google Scholar 

  59. Lewis KD, Migden MR. Effects of sonidegib dose reduction or delay in locally advanced basal cell carcinoma: 42-month data from BOLT. J Clin Oncol. 2018;36(Suppl.):abstract no. 9573.

  60. Migden MR, Guminski A, Gutzmer R, Dirix L, Lewis KD, Combemale P, et al. Treatment with two different doses of sonidegib in patients with locally advanced or metastatic basal cell carcinoma (BOLT): a multicentre, randomised, double-blind phase 2 trial. Lancet Oncol. 2015;16(6):716–28. https://doi.org/10.1016/S1470-2045(15)70100-2.

    Article  CAS  PubMed  Google Scholar 

  61. National Cancer Institute. Trial of patidegib gel 2%, 4%, and vehicle to decrease the number of surgically eligible basal cell carcinomas (BCC) in Gorlin syndrome patients (BCC). 2017. Available from: https://clinicaltrials.gov/ct2/show/NCT02762084. Accessed 5 Feb 2018.

  62. National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0. Bethesda (MD): U.S. Department of Health and Human Services, National Institutes of Health; 2010.

    Google Scholar 

  63. Chang ALS, Solomon JA, Hainsworth JD, Goldberg L, McKenna E, Day B-M, et al. Expanded access study of patients with advanced basal cell carcinoma treated with the hedgehog pathway inhibitor, vismodegib. J Am Acad Dermatol. 2014;70(1):60–9. https://doi.org/10.1016/j.jaad.2013.09.012.

    Article  CAS  PubMed  Google Scholar 

  64. Dummer R, Basset-Seguin N, Hansson J, Grob JJ, Kunstfeld R, Dréno B, et al. Impact of treatment breaks on vismodegib patient outcomes: exploratory analysis of the STEVIE study. J Clin Oncol. 2015;33(15_Suppl.):9024. https://doi.org/10.1200/jco.2015.33.15_suppl.9024.

    Article  Google Scholar 

  65. Paladini RD, Saleh J, Qian C, Xu GX, Rubin LL. Modulation of hair growth with small molecule agonists of the hedgehog signaling pathway. J Invest Dermatol. 2005;125(4):638–46. https://doi.org/10.1111/j.0022-202X.2005.23867.x.

    Article  CAS  PubMed  Google Scholar 

  66. Monderer RS, Wu WP, Thorpy MJ. Nocturnal leg cramps. Curr Neurol Neurosci Rep. 2010;10(1):53–9. https://doi.org/10.1007/s11910-009-0079-5.

    Article  PubMed  Google Scholar 

  67. Girard E, Lacour A, Abi Rached H, Ramdane N, Templier C, Dziwniel V, et al. Occurrence of vismodegib-induced cramps in the treatment of basal cell carcinoma: a prospective study in 30 patients. J Am Acad Dermatol. 2018;78(6):1213-6.e2. https://doi.org/10.1016/j.jaad.2017.11.045.

    Article  Google Scholar 

  68. Dinehart MS, McMurray S, Dinehart SM, Lebwohl M. L-Carnitine reduces muscle cramps in patients taking vismodegib. SKIN. 2018;2(2):90–5. https://doi.org/10.25251/skin.2.2.1.

    Article  Google Scholar 

  69. Ally MS, Tang JY, Lindgren J, et al. Effect of calcium channel blockade on vismodegib-induced muscle cramps. JAMA Dermatol. 2015;151(10):1132–4. https://doi.org/10.1001/jamadermatol.2015.1937.

    Article  PubMed  Google Scholar 

  70. Cannon JGD, Tran DC, Li S, Chang S. Levocarnitine for vismodegib-associated muscle spasms: a pilot randomized, double-blind, placebo-controlled, investigator initiated trial. J Eur Acad Dermatol Venereol. 2018;32(7):e298–9. https://doi.org/10.1111/jdv.14844.

    Article  CAS  PubMed  Google Scholar 

  71. Dessinioti C, Antoniou C, Stratigos AJ. From basal cell carcinoma morphogenesis to the alopecia induced by hedgehog inhibitors: connecting the dots. Br J Dermatol. 2017;177(6):1485–94. https://doi.org/10.1111/bjd.15738.

    Article  CAS  PubMed  Google Scholar 

  72. Soura E, Plaka M, Dessinioti C, Syrigos K, Stratigos AJ. Can hair re-growth be considered an early clinical marker of treatment resistance to Hedgehog inhibitors in patients with advanced basal cell carcinoma? A report of two cases. J Eur Acad Dermatol Venereol. 2016;30(10):1726–9. https://doi.org/10.1111/jdv.13754.

    Article  CAS  PubMed  Google Scholar 

  73. Lacouture ME, Dréno B, Ascierto PA, Dummer R, Basset-Seguin N, Fife K, et al. Characterization and management of Hedgehog pathway inhibitor-related adverse events in patients with advanced basal cell carcinoma. Oncologist. 2016;21(10):1218–29. https://doi.org/10.1634/theoncologist.2016-0186.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Solomon J, Chever D, Iarrobino A, Caldwell C. 1088. Successful control of adverse events associated with vismodegib treatment of advanced basal cell carcinoma by recognition of hedgehog pathway activity in normal adult tissue. International Investigative Dermatology Meeting; 7 May, 2013; Edinburgh.

  75. Kumari A, Ermilov AN, Allen BL, Bradley RM, Dlugosz AA, Mistretta CM. Hedgehog pathway blockade with the cancer drug LDE225 disrupts taste organs and taste sensation. J Neurophysiol. 2015;113(3):1034–40. https://doi.org/10.1152/jn.00822.2014.

    Article  CAS  PubMed  Google Scholar 

  76. Yang H, Cong W-N, Yoon JS, Egan JM. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds. Cancer Med. 2015;4(2):245–52. https://doi.org/10.1002/cam4.350.

    Article  CAS  PubMed  Google Scholar 

  77. Le Moigne M, Saint-Jean M, Jirka A, Quéreux G, Peuvrel L, Brocard A, et al. Dysgeusia and weight loss under treatment with vismodegib: benefit of nutritional management. Support Care Cancer. 2016;24(4):1689–95. https://doi.org/10.1007/s00520-015-2932-1.

    Article  PubMed  Google Scholar 

  78. Edwards BJ, Raisch DW, Saraykar SS, Sun M, Hammel JA, Tran HT, et al. Hepatotoxicity with vismodegib: an MD Anderson Cancer Center and Research on Adverse Drug Events and Reports Project. Drugs R D. 2017;17(1):211–8. https://doi.org/10.1007/s40268-016-0168-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Thomas CL, Arasaratnam M, Carlos G, Parasyn A, Baumgart KW, Fernandez-Penas P, et al. Drug reaction with eosinophilia and systemic symptoms in metastatic basal cell carcinoma treated with vismodegib. Australas J Dermatol. 2017;58(1):69–70. https://doi.org/10.1111/ajd.12472.

    Article  PubMed  Google Scholar 

  80. Lam T, Wolverton SE, Davis CL. Drug hypersensitivity syndrome in a patient receiving vismodegib. J Am Acad Dermatol. 2014;70(3):e65–6. https://doi.org/10.1016/j.jaad.2013.11.018.

    Article  PubMed  Google Scholar 

  81. Hosiriluck N, Jones C. Emergence of squamous cell carcinoma during treatment of basal cell carcinoma with vismodegib. J Integr Oncol. 2016;5(2):1–4. https://doi.org/10.4172/2329-6771.1000169.

    Article  Google Scholar 

  82. Mohan SV, Chang J, Li S, Henry A, Wood DJ, Chang AS. Increased risk of cutaneous squamous cell carcinoma after vismodegib therapy for basal cell carcinoma. JAMA Dermatol. 2016;152(5):527–32. https://doi.org/10.1001/jamadermatol.2015.4330.

    Article  PubMed  Google Scholar 

  83. Bhutani T, Abrouk M, Sima CS, Sadetsky N, Hou J, Caro I, et al. Risk of cutaneous squamous cell carcinoma after treatment of basal cell carcinoma with vismodegib. J Am Acad Dermatol. 2017;77(4):713–8. https://doi.org/10.1016/j.jaad.2017.03.038.

    Article  CAS  PubMed  Google Scholar 

  84. Saintes C, Saint-Jean M, Brocard A, Peuvrel L, Renaut JJ, Khammari A, et al. Development of squamous cell carcinoma into basal cell carcinoma under treatment with vismodegib. J Eur Acad Dermatol Venereol. 2015;29(5):1006–9. https://doi.org/10.1111/jdv.12526.

    Article  CAS  PubMed  Google Scholar 

  85. Danial C, Sarin KY, Oro AE, Chang ALS. An investigator-initiated open-label trial of sonidegib in advanced basal cell carcinoma patients resistant to vismodegib. Clin Cancer Res. 2016;22(6):1325–9. https://doi.org/10.1158/1078-0432.ccr-15-1588.

    Article  CAS  PubMed  Google Scholar 

  86. Atwood SX, Sarin KY, Whitson RJ, Li JR, Kim G, Rezaee M, et al. Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell. 2015;27(3):342–53. https://doi.org/10.1016/j.ccell.2015.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tu J, Li JJ, Song LT, Zhai HL, Wang J, Zhang XY. Molecular modeling study on resistance of WT/D473H SMO to antagonists LDE-225 and LEQ-506. Pharmacol Res. 2018;129:491–9. https://doi.org/10.1016/j.phrs.2017.11.025.

    Article  CAS  PubMed  Google Scholar 

  88. Chen L, Aria AB, Silapunt S, Lee H-H, Migden MR. Treatment of advanced basal cell carcinoma with sonidegib: perspective from the 30-month update of the BOLT trial. Future Oncol. 2018;14(6):515–25. https://doi.org/10.2217/fon-2017-0457.

    Article  CAS  PubMed  Google Scholar 

  89. Wang C, Wu H, Evron T, Vardy E, Han GW, Huang X-P, et al. Structural basis for Smoothened receptor modulation and chemoresistance to anti-cancer drugs. Nat Commun. 2014;5:4355. https://doi.org/10.1038/ncomms5355.

    Article  CAS  PubMed  Google Scholar 

  90. Zhao X, Pak E, Ornell KJ, Pazyra-Murphy MF, MacKenzie EL, Chadwick EJ, et al. A transposon screen identifies loss of primary cilia as a mechanism of resistance to SMO inhibitors. Cancer Discov. 2017;7(12):1436–49. https://doi.org/10.1158/2159-8290.cd-17-0281.

    Article  CAS  PubMed  Google Scholar 

  91. Sharpe HJ, Pau G, Dijkgraaf GJ, Basset-Seguin N, Modrusan Z, Januario T, et al. Genomic analysis of Smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell. 2015;27(3):327–41. https://doi.org/10.1016/j.ccell.2015.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brinkhuizen T, Reinders MG, van Geel M, Hendriksen AJL, Paulussen ADC, Winnepenninckx VJ, et al. Acquired resistance to the Hedgehog pathway inhibitor vismodegib due to smoothened mutations in treatment of locally advanced basal cell carcinoma. J Am Acad Dermatol. 2014;71(5):1005–8. https://doi.org/10.1016/j.jaad.2014.08.001.

    Article  CAS  PubMed  Google Scholar 

  93. Banvolgyi A, Lorincz K, Kiss N, Gyongyosi N, Marton D. Experiences with SMO antagonist vismodegib for the treatment of locally advanced basal cell carcinoma. J Invest Dermatol. 2017;137(Suppl. 2):abstract no. 035.

  94. Yoon J, Apicelli AJ 3rd, Pavlopoulos TV. Intracranial regression of an advanced basal cell carcinoma using sonidegib and itraconazole after failure with vismodegib. JAAD Case Rep. 2018;4(1):10–2. https://doi.org/10.1016/j.jdcr.2017.11.001.

    Article  PubMed  Google Scholar 

  95. Pounds R, Leonard S, Dawson C, Kehoe S. Repurposing itraconazole for the treatment of cancer. Oncol Lett. 2017;14(3):2587–97. https://doi.org/10.3892/ol.2017.6569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kim DJ, Kim J, Spaunhurst K, Montoya J, Khodosh R, Chandra K, et al. Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma. J Clin Oncol. 2014;32(8):745–51. https://doi.org/10.1200/JCO.2013.49.9525.

    Article  CAS  PubMed  Google Scholar 

  97. Ally MS, Ransohoff K, Sarin K, Atwood SX, Rezaee M, Bailey-Healy I, et al. Effects of combined treatment with arsenic trioxide and itraconazole in patients with refractory metastatic basal cell carcinoma. JAMA Dermatol. 2016;152(4):452–6. https://doi.org/10.1001/jamadermatol.2015.5473.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Buonamici S, Williams J, Morrissey M, Wang A, Guo R, Vattay A, et al. Interfering with resistance to Smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med. 2010;2(51):51ra70. https://doi.org/10.1126/scitranslmed.3001599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tran DC, Moffat A, Brotherton R, Pague A, Zhu GA, Chang ALS. An exploratory open-label, investigator-initiated study to evaluate the efficacy and safety of combination sonidegib and buparlisib for advanced basal cell carcinomas. J Am Acad Dermatol. 2018;78(5):1011–3. https://doi.org/10.1016/j.jaad.2017.11.031.

    Article  PubMed  Google Scholar 

  100. Shou Y, Robinson DM, Amakye DD, Rose KL, Cho Y-J, Ligon KL, et al. A five-gene Hedgehog signature developed as a patient preselection tool for hedgehog inhibitor therapy in medulloblastoma. Clin Cancer Res. 2015;21(3):585–93. https://doi.org/10.1158/1078-0432.ccr-13-1711.

    Article  CAS  PubMed  Google Scholar 

  101. Ally MS, Aasi S, Wysong A, Teng C, Anderson E, Bailey-Healy I, et al. An investigator-initiated open-label clinical trial of vismodegib as a neoadjuvant to surgery for high-risk basal cell carcinoma. J Am Acad Dermatol. 2014;71(5):904-11.e1. https://doi.org/10.1016/j.jaad.2014.05.020.

    Article  CAS  Google Scholar 

  102. Kunstfeld R, Zloty D, Tang JY, Basset-Seguin N, Bissonette R, Grob JJ, et al. Analysis of patients with and without Gorlin syndrome in MIKIE, a randomized phase 2 study to assess the efficacy and safety of two intermittent vismodegib regimens in patients with multiple basal cell carcinomas. European Association of Dermato-Oncology; 3 September, 2016; Vienna.

  103. Tang JY, Ally MS, Chanana AM, Mackay-Wiggan JM, Aszterbaum M, Lindgren JA, et al. Inhibition of the Hedgehog pathway in patients with basal-cell nevus syndrome: final results from the multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2016;17(12):1720–31. https://doi.org/10.1016/S1470-2045(16)30566-6.

    Article  CAS  PubMed  Google Scholar 

  104. Skvara H, Kalthoff F, Meingassner JG, Wolff-Winiski B, Aschauer H, Kelleher JF, et al. Topical treatment of basal cell carcinomas in nevoid basal cell carcinoma syndrome with a Smoothened inhibitor. J Invest Dermatol. 2011;131(8):1735–44. https://doi.org/10.1038/jid.2011.48.

    Article  CAS  PubMed  Google Scholar 

  105. Dong X, Wang C, Chen Z, Zhao W. Overcoming the resistance mechanisms of Smoothened inhibitors. Drug Discov Today. 2018;23(3):704–10. https://doi.org/10.1016/j.drudis.2018.01.012.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Gutzmer.

Ethics declarations

Funding

This work was funded by Sun Pharmaceutical Industries, Inc., Princeton, NJ, USA. The authors received no compensation for the creation of this review. Medical writing and editorial support were provided by Marie-Louise Ricketts, PhD, of AlphaBioCom, LLC, King of Prussia, PA, USA.

Conflict of interest

Ralf Gutzmer serves as a consultant to Almirall, Amgen, Bristol-Myers Squibb, Incyte, LEO Pharma, Merck Serono, Merck Sharp Dohme, Novartis, Pfizer, Pierre-Fabre, Roche, Sanofi Genzyme, Sun Pharmaceutical Industries, Inc., Takeda, and 4SC; has received travel grants and honoraria for lectures from Almirall, Amgen, Astra-Zeneca, Bristol-Myers Squibb, Merck Serono, Merck Sharp Dohme, Novartis, Pierre-Fabre, Roche, and Sun Pharmaceutical Industries, Inc.; and received research funding from Amgen, Johnson & Johnson, Merck-Serono, Novartis, and Pfizer. James A. Solomon serves as consultant to Lilly, Mayne, Sun Pharmaceutical Industries, Inc., and Ameriderm; and has received research funding from Allergan, Altana, Anacor, Apotex, AstraZeneca, Asubio, Barrier, Basilea, Bayer, Boehringer Ingelheim, Biocryst, Braintree, Centocor, Celtic, Chilter, Cipher, Clynsis, Concentrics, Covance, CuTech, Dermira, Dow, Eli Lilly, Encorium, Epithany, Galderma, Genentech, Genomics, GlaxoSmithKline, Glenmark, Health Decisions, HedgePath Pharmaceutical, Hill, ICON, Incyte, Inventiv, Kendle International, LEO Pharmaceuticals, Manhattan, Maruho, MAVIS, Merck, Novartis, Noven, Novum, Omnicare, ParaPro Inc, Parexel, Peplin, Pfizer, PharmaNet, Polynoma, PPD Development, PRA, Premier, Pro Trials, Quintiles, Regeneron, Research Sample Bank, Rho, Roche, Sanofi-Aventis, SciQuus, Serentis, SGS, Steifel, Sterling Bio, Symbio, Taisho, Taro, Teva Pharmaceutical, Theraputics Clinical Research, TKL Research, Tolmar, Topaz, Vanda, and Worldwide Clinical Trials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutzmer, R., Solomon, J.A. Hedgehog Pathway Inhibition for the Treatment of Basal Cell Carcinoma. Targ Oncol 14, 253–267 (2019). https://doi.org/10.1007/s11523-019-00648-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-019-00648-2

Navigation