Log in

Vemurafenib pharmacokinetics and its correlation with efficacy and safety in outpatients with advanced BRAF-mutated melanoma

  • Original Research
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Vemurafenib is a BRAF kinase inhibitor approved for first-line treatment of metastatic BRAF V600 -mutant melanoma. However, data on the pharmacokinetic/pharmacodynamic (PK/PD) relationship are lacking. The aim of this prospective, multicenter study was to explore the PK/PD relationship for vemurafenib in outpatients with advanced BRAF-mutated melanoma. Fifty-nine patients treated with single-agent vemurafenib were prospectively analyzed. Vemurafenib plasma concentration (n = 159) was measured at days 15, 30, 60, and 90 after treatment initiation. Clinical and biological determinants (including plasma vemurafenib concentration) for efficacy and safety were assessed using Cox's model and multivariate stepwise logistic regression. Median progression-free survival (PFS) and overall survival were 5.0 (95 % confidence interval [95 % CI] 2.0–6.0) and 11.0 (95% CI 7.0–16.0) months, respectively. Twenty-nine patients (49 %) experienced any grade ≥3 toxicity and the most frequent grade ≥2 toxicity was skin rash (37 %). Severe toxicities led to definitive discontinuation in seven patients (12 %). Grade ≥2 skin rash was not statistically associated with better objective response at day 60 (p = 0.06) and longer PFS (hazard ratio 0.47; 95 % CI 0.21–1.08; p = 0.075). Grade ≥2 skin rash was statistically increased in patients with ECOG  ≥ 1 (odds ratio 4.67; 95 % CI 1.39–15.70; p = 0.012). Vemurafenib concentration below 40.4 mg/L at day 15 was significantly associated with a shorter PFS (1.5 [0.5–5.5] vs. 4.5 [2–undetermined] months, p = 0.029). Finally, vemurafenib concentration was significantly greater in patients develo** grade ≥2 rash (61.7 ± 25.0 vs. 36.3 ± 17.9 mg/L, p < 0.0001). These results suggest that early plasma drug monitoring may help identify outpatients at high risk of non-response or grade ≥ 2 skin rash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366:707–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weeraratna AT (2012) RAF around the edges–the paradox of BRAF inhibitors. N Engl J Med 366:271–3

    Article  CAS  PubMed  Google Scholar 

  4. da Rocha DS, Salmonson T, van Zwieten-Boot B, Jonsson B, Marchetti S, Schellens JH et al (2013) The European Medicines Agency review of vemurafenib (Zelboraf®) for the treatment of adult patients with BRAF V600 mutation-positive unresectable or metastatic melanoma: summary of the scientific assessment of the Committee for Medicinal Products for Human Use. Eur J Cancer 49:1654–61

    Article  Google Scholar 

  5. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Abernethy AP, Etheredge LM, Ganz PA, Wallace P, German RR, Neti C et al (2010) Rapid-learning system for cancer care. J Clin Oncol 28:4268–74

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gao B, Yeap S, Clements A, Balakrishnar B, Wong M, Gurney H (2012) Evidence for therapeutic drug monitoring of targeted anticancer therapies. J Clin Oncol 30:4017–25

    Article  CAS  PubMed  Google Scholar 

  8. Yu H, Steeghs N, Nijenhuis CM, Schellens JH, Beijnen JH, Huitema AD (2014) Practical guidelines for therapeutic drug monitoring of anticancer tyrosine kinase inhibitors: focus on the pharmacokinetic targets. Clin Pharmacokinet 53:305–25

    Article  CAS  PubMed  Google Scholar 

  9. Widmer N, Bardin C, Chatelut E, Paci A, Beijnen J, Levêque D et al (2014) Review of therapeutic drug monitoring of anticancer drugs part two–targeted therapies. Eur J Cancer 50:2020–36

    Article  CAS  PubMed  Google Scholar 

  10. Zhen Y, Thomas-Schoemann A, Sakji L, Boudou-Rouquette P, Dupin N, Mortier L et al (2013) An HPLC-UV method for the simultaneous quantification of vemurafenib and erlotinib in plasma from cancer patients. J Chromatogr B Analyt Technol Biomed Life Sci 928:93–7

    Article  CAS  PubMed  Google Scholar 

  11. McArthur GA, Chapman PB, Robert C, Larkin J, Haanen JB, Dummer R et al (2014) Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol 15:323–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Larkin J, Del Vecchio M, Ascierto PA, Krajsova I, Schachter J, Neyns B et al (2014) Vemurafenib in patients with BRAF(V600) mutated metastatic melanoma: an open-label, multicentre, safety study. Lancet Oncol 15:436–44

    Article  CAS  PubMed  Google Scholar 

  13. Regnier-Rosencher E, Lazareth H, Gressier L, Avril MF, Thervet E, Dupin N (2013) Acute kidney injury in patients with severe rash on vemurafenib treatment for metastatic melanomas. Br J Dermatol 169:934–8

    Article  CAS  PubMed  Google Scholar 

  14. Launay-Vacher V, Zimner-Rapuch S, Poulalhon N, Fraisse T, Garrigue V, Gosselin M et al (2014) Acute renal failure associated with the new BRAF inhibitor vemurafenib: a case series of 8 patients. Cancer 120:2158–63

    Article  CAS  PubMed  Google Scholar 

  15. Uthurriague C, Thellier S, Ribes D, Rostaing L, Paul C, Meyer N (2014) Vemurafenib significantly decreases glomerular filtration rate. J Eur Acad Dermatol Venereol 28:978–9

    Article  CAS  PubMed  Google Scholar 

  16. Wenk KS, Pichard DC, Nasabzadeh T, Jang S, Venna SS (2013) Vemurafenib-induced DRESS. JAMA Dermatol 149:1242–3

    Article  PubMed  Google Scholar 

  17. Gey A, Milpied B, Dutriaux C, Mateus C, Robert C, Perro G, Taieb A, Ezzedine K, Jouary T. Severe cutaneous adverse reaction associated with vemurafenib: DRESS, AGEP or overlap reaction? J Eur Acad Dermatol Venereol. 2014 Aug 29.

  18. Yadav V, Zhang X, Liu J, Estrem S, Li S, Gong XQ et al (2012) Reactivation of mitogen-activated protein kinase (MAPK) pathway by FGF receptor 3 (FGFR3)/Ras mediates resistance to vemurafenib in human B-RAF V600E mutant melanoma. J Biol Chem 287:28087–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fukudo M, Ikemi Y, Togashi Y, Masago K, Kim YH, Mio T et al (2013) Population pharmacokinetics/pharmacodynamics of erlotinib and pharmacogenomic analysis of plasma and cerebrospinal fluid drug concentrations in Japanese patients with non-small cell lung cancer. Clin Pharmacokinet 52:593–609

    Article  CAS  PubMed  Google Scholar 

  20. Arrondeau J, Mir O, Boudou-Rouquette P, Coriat R, Ropert S, Dumas G et al (2012) Sorafenib exposure decreases over time in patients with hepatocellular carcinoma. Investig New Drugs 30:2046–9

    Article  CAS  Google Scholar 

  21. Narjoz C, Cessot A, Thomas-Schoemann A, Golmard JL, Huillard O, Boudou-Rouquette P et al (2015) Role of the lean body mass and of pharmacogenetic variants on the pharmacokinetics and pharmacodynamics of sunitinib in cancer patients. Investig New Drugs 33:257–68

    Article  CAS  Google Scholar 

  22. Boudou-Rouquette P, Narjoz C, Golmard JL, Thomas-Schoemann A, Mir O, Taieb F et al (2012) Early sorafenib-induced toxicity is associated with drug exposure and UGTIA9 genetic polymorphism in patients with solid tumors: a preliminary study. PLoS One 7:e42875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fukudo M, Ito T, Mizuno T, Shinsako K, Hatano E, Uemoto S et al (2014) Exposure-toxicity relationship of sorafenib in Japanese patients with renal cell carcinoma and hepatocellular carcinoma. Clin Pharmacokinet 53:185–96

    Article  CAS  PubMed  Google Scholar 

  24. Petit-Jean E, Buclin T, Guidi M, Quoix E, Gourieux B, Decosterd LA et al (2015) Erlotinib: another candidate for the therapeutic drug monitoring of targeted therapy of cancer? A pharmacokinetic and pharmacodynamic systematic review of literature. Ther Drug Monit 37:2–21

    Article  CAS  PubMed  Google Scholar 

  25. Wacker B, Nagrani T, Weinberg J, Witt K, Clark G, Cagnoni PJ (2007) Correlation between development of rash and efficacy in patients treated with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib in two large phase III studies. Clin Cancer Res 13:3913–21

    Article  CAS  PubMed  Google Scholar 

  26. Krawczyk P, Kowalski DM, Krawczyk KW, Szczyrek M, Mlak R, Rolski A et al (2013) Predictive and prognostic factors in second- and third-line erlotinib treatment in NSCLC patients with known status of the EGFR gene. Oncol Rep 30:1463–72

    CAS  PubMed  Google Scholar 

  27. Abdel-Rahman O, Fouad M (2015) Correlation of cetuximab-induced skin rash and outcomes of solid tumor patients treated with cetuximab: a systematic review and meta-analysis. Crit Rev Oncol Hematol 93:127–35

    Article  PubMed  Google Scholar 

  28. Schilling B, Sondermann W, Zhao F, Griewank KG, Livingstone E, Sucker A et al (2014) Differential influence of vemurafenib and dabrafenib on patients’ lymphocytes despite similar clinical efficacy in melanoma. Ann Oncol 25:747–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to J. Lecas (Centre de Langues de la Maison des Langues, Université Paris Descartes) in proofreading the manuscript and to Ms. Scheer-Senyarich for her technical assistance.

Funding sources

None.

Conflict of Interest

N. Kramkimel, A. Thomas-Schoemann, L. Sakji, JL. Golmard, G. Noe, E. Regnier-Rosencher, N. Chapuis, M. Vidal, F. Goldwasser, N. Dupin and B. Blanchet have no conflicts of interest to declare. E. Maubec is involved in an advisory Board for Roche. L. Mortier is involved with advisory boards for Roche, Bristol-Myers Squibb, GlaxoSmithKline and MSD. MF. Avril is involved in a steering committee for Roche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Blanchet.

Additional information

N. Kramkimel, A. Thomas-Schoemann, N. Dupin, and B. Blanchet contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramkimel, N., Thomas-Schoemann, A., Sakji, L. et al. Vemurafenib pharmacokinetics and its correlation with efficacy and safety in outpatients with advanced BRAF-mutated melanoma. Targ Oncol 11, 59–69 (2016). https://doi.org/10.1007/s11523-015-0375-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-015-0375-8

Keywords

Navigation