Log in

Comparison of spinal cord stimulation profiles from intra- and extradural electrode arrangements by finite element modelling

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Spinal cord stimulation currently relies on extradural electrode arrays that are separated from the spinal cord surface by a highly conducting layer of cerebrospinal fluid. It has recently been suggested that intradural placement of the electrodes in direct contact with the pial surface could greatly enhance the specificity and efficiency of stimulation. The present computational study aims at quantifying and comparing the electrical current distributions as well as the spatial recruitment profiles resulting from extra- and intra-dural electrode arrangements. The electrical potential distribution is calculated using a 3D finite element model of the human thoracic spinal canal. The likely recruitment areas are then obtained using the potential as input to an equivalent circuit model of the pre-threshold axonal response. The results show that the current threshold to recruitment of axons in the dorsal column is more than an order of magnitude smaller for intradural than extradural stimulation. Intradural placement of the electrodes also leads to much higher contrast between the stimulation thresholds for the dorsal root entry zone and the dorsal column, allowing better focusing of the stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alo KM, Holsheimer J (2002) New trends in neuromodulation for the management of neuropathic pain. Neurosurgery 50(4):690–704

    PubMed  Google Scholar 

  2. Atkinson L, Sundaraj S, Brooker C, OCallaghan J, Teddy P, Salmon J, Semple T, Majedi P (2011) Recommendations for patient selection in spinal cord stimulation. J Clin Neurosci 18(10):1295–1302

    Article  CAS  PubMed  Google Scholar 

  3. Coburn B (1980) Electrical stimulation of the spinal cord: two-dimensional finite element analysis with particular reference to epidural electrodes. Med Biol Eng Comput 18(5):573–584

    Article  CAS  PubMed  Google Scholar 

  4. Coburn B (1985) A theoretical study of epidural electrical stimulation of the spinal cord-part ii: effects on long myelinated fibers. IEEE Trans Biomed Eng 11:978–986

    Article  Google Scholar 

  5. Coburn B, Sin WK (1985) A theoretical study of epidural electrical stimulation of the spinal cord part i: finite element analysis of stimulus fields. IEEE Trans Biomed Eng 11:971–977

    Article  Google Scholar 

  6. de Vos CC, Hilgerink MP, Buschman HP, Holsheimer J (2009) Electrode contact configuration and energy consumption in spinal cord stimulation. Neurosurgery 65(6):210–217

    PubMed  Google Scholar 

  7. Eldabe S, Kumar K, Buchser E, Taylor RS (2010) An analysis of the components of pain, function, and health-related quality of life in patients with failed back surgery syndrome treated with spinal cord stimulation or conventional medical management. Neuromodulation Technol Neural Interface 13(3):201–209

    Article  Google Scholar 

  8. Flouty O, Oya H, Kawasaki H, Wilson S, Reddy CG, Jeffery ND, Brennan TJ, Gibson-Corley KN, Utz M, Gillies GT et al (2012) A new device concept for directly modulating spinal cord pathways: initial in vivo experimental results. Physiol Meas 33(12):2003

    Article  PubMed  Google Scholar 

  9. Flouty OE, Oya H, Kawasaki H, Reddy CG, Fredericks DC, Gibson-Corley KN, Jeffery ND, Gillies GT, Howard MA III (2013) Intracranial somatosensory responses with direct spinal cord stimulation in anesthetized sheep. PloS one 8(2):e56–e266

    Article  Google Scholar 

  10. Frankenhaeuser B, Huxley A (1964) The action potential in the myelinated nerve fibre of xenopus laevis as computed on the basis of voltage clamp data. J Physiol 171(2):302–315

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Gibson-Corley KN, Oya H, Flouty O, Fredericks DC, Jeffery ND, Gillies GT, Howard MA III (2012) Ovine tests of a novel spinal cord neuromodulator and dentate ligament fixation method. J Investig Surg 25(6):366–374

    Article  Google Scholar 

  12. He J, Barolat G, Holsheimer J, Struijk JJ (1994) Perception threshold and electrode position for spinal cord stimulation. Pain 59(1):55–63

    Article  CAS  PubMed  Google Scholar 

  13. Hernández-Labrado GR, Polo JL, López-Dolado E, Collazos-Castro JE (2011) Spinal cord direct current stimulation: finite element analysis of the electric field and current density. Med Biol Eng Comput 49(4):417–429

    Article  PubMed  Google Scholar 

  14. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Holsheimer J (2002) Which neuronal elements are activated directly by spinal cord stimulation. Neuromodulation Technol Neural Interface 5(1):25–31

    Article  Google Scholar 

  16. Holsheimer J, Struijk JJ (1992) Electrode geometry and preferential stimulation of spinal nerve fibers having different orientations: a modeling study. In: Engineering in Medicine and Biology Society, 1992 14th Annual International Conference of the IEEE, vol. 4, pp. 1374–1375. IEEE

  17. Howard M, Utz M, Brennan T, Dalm B, Viljoen S, Jeffery N, Gillies G (2011) Intradural approach to selective stimulation in the spinal cord for treatment of intractable pain: design principles and wireless protocol. J Appl Phys 110(4):044702

    Article  Google Scholar 

  18. Howard M, Utz M, Brennan T, Dalm B, Viljoen S, Kanwal J, Gillies G (2011) Biophysical attributes of an in vitro spinal cord surrogate for use in develo** an intradural neuromodulation system. J Appl Phys 110(7):074701

    Article  Google Scholar 

  19. Koole P, Holsheimer J, Struijk JJ, Verloop AJ (1997) Recruitment characteristics of nerve fascicles stimulated by a multigroove electrode. IEEE Trans Rehabili Eng 5(1):40–50

    Article  CAS  Google Scholar 

  20. Kumar K, Bishop S (2009) Financial impact of spinal cord stimulation on the healthcare budget: a comparative analysis of costs in canada and the united states: Clinical article. J Neurosurg Spine 10(6):564–573

    Article  PubMed  Google Scholar 

  21. Ladenbauer J, Minassian K, Hofstoetter US, Dimitrijevic MR, Rattay F (2010) Stimulation of the human lumbar spinal cord With implanted and surface electrodes: a computer simulation study. IEEE Trans Neural Syst Rehabil 18(6):637–645

    Article  Google Scholar 

  22. Manola L, Holsheimer J, Veltink P (2005) Technical performance of percutaneous leads for spinal cord stimulation: a modeling study. Neuromodulation Technol Neural Interf 8(2):88–99

    Article  Google Scholar 

  23. McIntyre CC, Grill WM (2001) Finite element analysis of the current-density and electric field generated by metal microelectrodes. Ann Biomed Eng 29(3):227–235

    Article  CAS  PubMed  Google Scholar 

  24. McNeal DR (1976) Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 4:329–337

    Article  Google Scholar 

  25. Melzack R, Wall I (1965) Pain mechanisms: a new theory. Science 50:971–979

    Article  Google Scholar 

  26. Oakley JC, Prager JP (2002) Spinal cord stimulation: mechanisms of action. Spine 27(22):2574–2583

    Article  PubMed  Google Scholar 

  27. Oya H, Reddy C, Dahdaleh N, Wilson S, Howard M III, Jeffery N, Utz M, Gillies G (2012) Applier tool for intradural spinal cord implants. J Med Eng Technol 36(3):169–173

    Article  CAS  PubMed  Google Scholar 

  28. Pan Y, Shreiber DI, Pelegri AA (2011) A transition model for finite element simulation of kinematics of central nervous system white matter. IEEE Trans Biomed Eng 58(12):3443–3446

    Article  PubMed  Google Scholar 

  29. Rattay F (1986) Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng 10:974–977

    Article  Google Scholar 

  30. Rattay F (1989) Analysis of models for extracellular fiber stimulation. IEEE Trans Biomed Eng 36(7):676–682

    Article  CAS  PubMed  Google Scholar 

  31. Sankarasubramanian V, Buitenweg J, Holsheimer J, Veltink P (2011) Electrode alignment of transverse tripoles using a percutaneous triple-lead approach in spinal cord stimulation. J Neural Eng 8(1):016010

    Article  CAS  PubMed  Google Scholar 

  32. Sankarasubramanian V, Buitenweg JR, Holsheimer J, Veltink P (2011) Triple leads programmed to perform as longitudinal guarded cathodes in spinal cord stimulation: a modeling study. Neuromodulation Technol Neural Interf 14(5):401–411

    Article  Google Scholar 

  33. Shackelford JF, Alexander W (eds) (2001) CRC materials science and engineering handbook, 3rd edn. CRC Press, Boca Raton

  34. Shealy CN, Mortimer J, Reswick J (1967) Electrical inhibition of pain by stimulation of the dorsal columns. Anesth Analg 46:489–491

    CAS  PubMed  Google Scholar 

  35. Song SH, Gillies GT, Howard MA III, Kuhnley B, Utz M (2013) Power and signal transmission protocol for a contactless subdural spinal cord stimulation device. Biomed Microdevices 15(1):27–36

    Article  PubMed  Google Scholar 

  36. Struijk JJ, Holsheimer J, van Veen BK (1988) Analysis of dorsal column stimulation. In: Engineering in medicine and biology society, 1988. Proceedings of the Annual International Conference of the IEEE, pp. 1692–1693. IEEE

  37. Struijk JJ, Holsheimer J, Van Veen B, Boom HB (1991) Epidural spinal cord stimulation: calculation of field potentials with special reference to dorsal column nerve fibers. IEEE Trans Biomed Eng 38(1):104–110

    Article  CAS  PubMed  Google Scholar 

  38. Struijk JJ, Holsheimer J, van der Heide GG, Boom HB (1992) Recruitment of dorsal column fibers in spinal cord stimulation: influence of collateral branching. IEEE Trans Biomed Eng 39(9):903–912

    Article  CAS  PubMed  Google Scholar 

  39. Struijk JJ, Holsheimer J, Boom HB (1993) Excitation of dorsal root fibers in spinal cord stimulation: a theoretical study. IEEE Trans Biomed Eng 40(7):632–639

    Article  CAS  PubMed  Google Scholar 

  40. Tracey B, Williams M (2011) Computationally efficient bioelectric field modeling and effects of frequency-dependent tissue capacitance. J Neural Eng 8(3):036017

    Article  PubMed  Google Scholar 

  41. Warman EN, Grill WM, Durand D (1992) Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds. IEEE Trans Biomed Eng 39(12):1244–1254

    Article  CAS  PubMed  Google Scholar 

  42. Wesselink W, Holsheimer J (1995) Electrical safety in spinal cord stimulation: current density analysis by computer modeling. In: Engineering in medicine and biology society, 1995, IEEE 17th Annual Conference, vol. 2, pp. 1135–1136. IEEE

  43. Woo J, Miller CA, Abbas PJ (2010) The dependence of auditory nerve rate adaptation on electric stimulus parameters, electrode position, and fiber diameter: a computer model study. J Assoc Res Otolaryngol 11(2):283–296

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. J. Buitenweg of U. Twente for helpful discussions, and their University of Iowa colleagues H. Chen and H. Kawasaki for technical assistance with the experimental part of the project. Partial support by the University of Virginia Biomedical Innovation Fund is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Utz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Oya, H., Flouty, O.E. et al. Comparison of spinal cord stimulation profiles from intra- and extradural electrode arrangements by finite element modelling. Med Biol Eng Comput 52, 531–538 (2014). https://doi.org/10.1007/s11517-014-1157-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1157-7

Keywords

Navigation