Log in

Gellan Hydrogels: Preparation, Rheological Characterization and Application in Encapsulation of Curcumin

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Hydrogels can be used to protect some labile active principles, as polyphenol-rich substances, that can be added to foods to prepare functional ones. Rheological properties of gels formed through the addition of calcium chloride to gellan solutions were studied. It can be concluded that preparation variables and not only formulation ones are determinant in rheological properties of the resulting gels, as they are not in an equilibrium state but they are continuously evolving during hours to stronger gels corresponding to a denser network. It could be related to the fact that local non-gelled domains are formed surrounded by a shell of gel where Ca2+ ions take some time to arrive. A minimum Ca2+/gellan ratio (CG) is required to reach the gel point (GP), determined as the CG where the ratio loss modulus/elastic modulus (G”/G’) collapse for all frequencies. Calcium-induced external gelation of oil-in-water (O/W) emulsions where a curcumin-in-oil solution is the disperse phase and a watery solution of gellan is the continuous phase was used to prepare beads were curcumin is entrapped in order to prevent its degradation. Smaller droplet-sized emulsions were obtained with higher gellan concentrations, since a higher viscosity of the continuous phase allowed to reach the critical Capillary number CaC at lower radius of droplets. An encapsulation yield around 90% was reached for gellan concentrations of 1% w/v, and the resulting encapsulated curcumin presented around 6 times slower light degradation than free curcumin-in-oil solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. El Soda, L. Pannell, N. Olson, J. Microencapsul. 6(3), 319–326 (1989)

    Article  PubMed  Google Scholar 

  2. G. Sworn, G.R. Sanderson, W. Gibson, Food Hydrocoll. 9(4), 265–271 (1995)

    Article  CAS  Google Scholar 

  3. D.F. Coutinho, S.V. Sant, H. Shin, J.T. Oliveira, M.E. Gomes, Biomaterials 31(29), 7494–7502 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. K. Ako, Carbohydr. Polym. 115, 408–414 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. P. Tricardi, C. Cencetti, R. Ria, F. Alhaique, T. Coviello, Molecules 14(9), 3376–3391 (2009)

    Article  CAS  Google Scholar 

  6. C.T. Schwall, I.A. Banerjee, Materials 2(2), 577–612 (2009)

    Article  CAS  PubMed Central  Google Scholar 

  7. F.G. Prezotti, B.S. Cury, R.C. Evangelista, Carbohydr. Polym. 113, 286–295 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. E.M. Ahmed, J. Adv. Res. 6(2), 105–121 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. L.S. Liu, J. Kost, F. Yan, R.C. Spiro, Polymers 4(2), 997–1011 (2012)

    Article  CAS  Google Scholar 

  10. E.R. Morris, K. Nishinari, M. Rinaudo, Food Hydrocoll. 28(2), 373–411 (2012)

    Article  CAS  Google Scholar 

  11. B. Karthika, J.S. Vishalakshi, Der Pharma Chemica 5, 185–192 (2013)

    CAS  Google Scholar 

  12. L. Brannon-Peppas, R.S. Harland, J. Control. Release 17(3), 297–298 (1991)

    Article  Google Scholar 

  13. S. Ishihara, M. Nakauma, T. Funami, S. Odake, K. Nishinari, Food Hydrocoll. 25(5), 1016–1024 (2011)

    Article  CAS  Google Scholar 

  14. Deglución: K. Nishinari, Food Sci. Technol. Res. 15, 99–106 (2009)

    Article  Google Scholar 

  15. N. Sahiner, Prog. Polym. Sci. 38(9), 1329–1356 (2013)

    Article  CAS  Google Scholar 

  16. S.J. Pérez-Campos, N. Chavarría-Hernández, A. Tecante, M. Ramírez-Gil, Food Hydrocoll. 28(2), 291–300 (2012)

    Article  CAS  Google Scholar 

  17. V.M.F. Gonçalves, A. Reis, M.R.M. Domingues, J.A. Lopes-da-Silva, A.M. Fialho, L.M. Moreira, I. Sá-Correia, M.A. Coimbra, Carbohydr. Polym. 77(1), 10–19 (2009)

    Article  CAS  Google Scholar 

  18. G.R. Bardajee, A. Pourjavadi, S. Ghavami, R. Soleyman, F. Jafarpour, J. Photochem, Photobiol. B 102(232–240) (2011)

  19. T. Osmałek, A. Froelich, S. Tasarek, Int. J. Pharm. 466(1-2), 328–340 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. Y. Nitta, R. Takahashi, K. Nishinari, Biomolecules 11(1), 187–191 (2009)

    Google Scholar 

  21. E. Miyoshi, T. Takaya, K. Nishinari, Carbohydr. Polym. 30(2), 109–119 (1996)

    Article  CAS  Google Scholar 

  22. F. Yang, S. **a, C. Tan, X. Zhang, Eur. Food Res. Technol. 237(4), 467–479 (2013)

    Article  CAS  Google Scholar 

  23. S. Song, Z. Wang, Y. Qian, L. Zhang, E. Luo, J. Agric. Food Chem. 60(17), 4388–4395 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. C. Tan, J. **e, X. Zhang, J. Cai, S. **a, Food Hydrocoll. 57, 236–245 (2016)

    Article  CAS  Google Scholar 

  25. T.P. Sari, B. Mann, R. Kumar, R.R.B. Singh, R. Sharma, M. Bhardwaj, S. Athira, Food Hydrocoll. 43, 540–546 (2015)

    Article  CAS  Google Scholar 

  26. X. Chen, L.Q. Zou, J. Niu, W. Liu, S.F. Peng, C.M. Liu, Molecules 20, 293–311 (2015)

    Google Scholar 

  27. A.T.B. Nguyen, P. Winckler, P. Loison, Y. Wache, O. Chambin, Colloids Surf., B 121, 290–298 (2014)

    Article  CAS  Google Scholar 

  28. B. Lupo, A. Maestro, M. Porras, J.M. Gutiérrez, C. González, Food Hydrocoll. 38, 56–65 (2014)

    Article  CAS  Google Scholar 

  29. N. Dogra, R. Choudhary, P. Kohli, J.D. Haddock, S. Makwana, B. Horev, Y. Vinokur, S. Droby, V. Rodov, J. Agric. Food Chem. 63(9), 2557–2565 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. L. Hu, Y. Jia, F. Niu, Z. Jia, X. Yang, K. Jiao, J. Agric. Food Chem. 60(29), 7137–7141 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. A. Munin, F. Edwards-Lévy, Pharmaceutics 3(4), 793–829 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. D. Patra, C. Barakat, Spectrochim. Acta, Part A 79(5), 1034–1041 (2011)

    Article  CAS  Google Scholar 

  33. M. Shi, L. Yao, Y. Mao, Y. Ming, G. Ouyang, Cell Biol. Int. Rep. 30(3), 221–226 (2006)

    Article  CAS  Google Scholar 

  34. G.R.B. Irving, A. Karmokar, D.P. Berry, K. Brown, W.P. Stewart, Best Pract. Res. Clin. Gastroenterol. 25(4-5), 519–534 (2011)

    Article  CAS  PubMed  Google Scholar 

  35. V.H. Ferreira, A. Nazli, S.E. Dizzell, K. Mueller, C. Kaushic, PLoS One 10, 1–19 (2015)

    CAS  Google Scholar 

  36. Y. Wang, Z. Lu, F. Lv, X. Bie, Eur. Food Res. Technol. 229(3), 391–396 (2009)

    Article  CAS  Google Scholar 

  37. C. Wang, Z. Liu, G. Xu, B. Yin, P. Yao, Food Hydrocoll. 61, 11–19 (2016)

    Article  CAS  Google Scholar 

  38. Y. Fan, J. Yi, Y. Zhang, W. Yokoyama, Food Chem. 239, 1210–1218 (2018)

    Article  CAS  PubMed  Google Scholar 

  39. S. Bisht, A. Maitra, Curr. Drug Discov. Technol. 6(3), 192–199 (2009)

    Article  CAS  PubMed  Google Scholar 

  40. A. Vajpayee, S. Fartya, A.P. Singh, S.K. Jha, J. Pharm, Res. Opinion 4, 108–112 (2011)

    Google Scholar 

  41. B.N. Singh, L.D. Trombetta, K.H. Kim, Pharm. Dev. Technol. 9(4), 399–407 (2004)

    Article  CAS  PubMed  Google Scholar 

  42. K. Nakagawa, N. Sowasod, T. Charinpanitkul, A. Soottitantawat, W. Tanthapanichakoon, Procedia Food Sci. 1, 1973–1979 (2011)

    Article  CAS  Google Scholar 

  43. H.M. Shewan, J.R. Stokes, J. Food Eng. 118, 781–792 (2013)

    Article  CAS  Google Scholar 

  44. E. Rudé, J. Llorens, J. Non-Cryst. Solids 352(21-22), 2220–2225 (2006)

    Article  CAS  Google Scholar 

  45. H.H. Winter, F. Chambon, J. Rheol. 30(2), 367–382 (1986)

    Article  CAS  Google Scholar 

  46. F. Chambon, H.H. Winter, J. Rheol. 31(8), 683–697 (1987)

    Article  CAS  Google Scholar 

  47. A. May, K. Aramaki, J.M. Gutiérrez, Langmuir 27(6), 2286–2298 (2011)

    Article  CAS  PubMed  Google Scholar 

  48. M.M. Alam, Y. Sugiyama, K. Watanabe, K. Aramaki, J. Colloid Interface Sci. 341(2), 267–272 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to the European Commission for the scholarship funded within the Erasmus+ KA1 Programme, ref. 2013-0241 - Erasmus Mundus Joint Master Degree in Chemical Innovation and Regulation, and to the Ministry of Science and Innovation of Spain (Project CTQ2016-80645-R) with Feder funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Maestro.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambebila, E.N., Santamaría, E., Maestro, A. et al. Gellan Hydrogels: Preparation, Rheological Characterization and Application in Encapsulation of Curcumin. Food Biophysics 14, 154–163 (2019). https://doi.org/10.1007/s11483-019-09568-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09568-0

Keywords

Navigation