Log in

Inhibition of Microglial Activation Ameliorates Inflammation, Reduced Neurogenesis in the hippocampus, and Impaired Brain Function in a Rat Model of Bilirubin Encephalopathy

  • Research
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Hyperbilirubinemia is one of the most common occurrence in newborns and is toxic to the brain, resulting in neurological sequelae such as auditory impairment, with potential to evolve to chronic bilirubin encephalopathy and long-term cognitive impairment in adults. In the early postnatal period, neurogenesis is rigorous and neuroinflammation is detrimental to the brain. What are the alterations in neurogenesis and the underlying mechanisms of bilirubin encephalopathy during the early postnatal period? This study found that, there were a reduction in the number of neuronal stem/progenitor cells, an increase in microglia in the dentate gyrus (DG) and an inflammatory state in the hippocampus, characterized by increased levels of IL-6, TNF-α, and IL-1β, as well as a decreased level of IL-10 in a rat model of bilirubin encephalopathy (BE). Furthermore, there was a significant decrease in the number of newborn neurons and the expression of neuronal differentiation-associated genes (NeuroD and Ascl1) in the BE group. Additionally, cognitive impairment was observed in this group. The administration of minocycline, an inhibitor of microglial activation, resulted in a reduction of inflammation in the hippocampus, an enhancement of neurogenesis, an increase in the expression of neuron-related genes (NeuroD and Ascl1), and an improvement in cognitive function in the BE group. These results demonstrate that microglia play a critical role in reduced neurogenesis and impaired brain function resulting from bilirubin encephalopathy model, which could inspire the development of novel pharmaceutical and therapeutic strategies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Abbreviations

NSPCs:

Neuronal stem and progenitor cells

UCB:

Unconjugated bilirubin

BIND:

Bilirubin-induced neurological dysfunction

NNJ:

Neonatal jaundice

BE:

Bilirubin encephalopathy

DG:

Dentate gyrus

MCP-1:

Monocyte chemoattractant protein-1

CCR2:

C-C chemokine receptor type- 2

BrdU:

Bromodeoxyuridine

SOX2:

SRY-Box Transcription Factor 2

NeuroD1:

Neurogenic differentiation factor 1

ASCL1:

Achaete-scute homolog 1

NEUROG2:

Neurogenin 2

References

  • Ali FR, Cheng K, Kirwan P, Metcalfe S, Livesey FJ, Barker RA, Philpott A (2014) The phosphorylation status of Ascl1 is a key determinant of neuronal differentiation and maturation in vivo and in vitro. Development 141:2216–2224

    Article  CAS  PubMed  Google Scholar 

  • Amin SB, Wang H (2015) Unbound unconjugated hyperbilirubinemia is associated with central apnea in premature infants. J Pediatr 166:571–575

    Article  PubMed  PubMed Central  Google Scholar 

  • Amin SB, Smith T, Wang H (2011) Is neonatal jaundice associated with Autism Spectrum disorders: a systematic review. J Autism Dev Disord 41:1455–1463

    Article  PubMed  PubMed Central  Google Scholar 

  • Araki T, Ikegaya Y, Koyama R (2021) The effects of microglia- and astrocyte-derived factors on neurogenesis in health and disease. Eur J Neurosci 54:5880–5901

    Article  CAS  PubMed  Google Scholar 

  • Aydin B, Kakumanu A, Rossillo M, Moreno-Estelles M, Garipler G, Ringstad N, Flames N, Mahony S, Mazzoni EO (2019) Proneural factors Ascl1 and Neurog2 contribute to neuronal subtype identities by establishing distinct chromatin landscapes. Nat Neurosci 22:897–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badimon A, Strasburger HJ, Ayata P, Chen X, Nair A, Ikegami A, Hwang P, Chan AT, Graves SM, Uweru JO, Ledderose C, Kutlu MG, Wheeler MA, Kahan A, Ishikawa M, Wang YC, Loh YE, Jiang JX, Surmeier DJ, Robson SC, Junger WG, Sebra R, Calipari ES, Kenny PJ, Eyo UB, Colonna M, Quintana FJ, Wake H, Gradinaru V, Schaefer A (2020) Negative feedback control of neuronal activity by microglia. Nature 586:417–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassett B, Subramaniyam S, Fan Y, Varney S, Pan H, Carneiro AMD, Chung CY (2021) Minocycline alleviates depression-like symptoms by rescuing decrease in neurogenesis in dorsal hippocampus via blocking microglia activation/phagocytosis. Brain Behav Immun 91:519–530

    Article  CAS  PubMed  Google Scholar 

  • Belmadani A, Tran PB, Ren D, Miller RJ (2006) Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci 26:3182–3191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3:517–530

    Article  CAS  PubMed  Google Scholar 

  • Bond AM, Ming GL, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17:385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borst K, Dumas AA, Prinz M (2021) Microglia: Immune and non-immune functions. Immunity 54:2194–2208

    Article  CAS  PubMed  Google Scholar 

  • Boutin C, Hardt O, de Chevigny A, Core N, Goebbels S, Seidenfaden R, Bosio A, Cremer H (2010) NeuroD1 induces terminal neuronal differentiation in olfactory neurogenesis. Proc Natl Acad Sci U S A 107:1201–1206

    Article  CAS  PubMed  Google Scholar 

  • Burmeister AR, Marriott I (2018) The Interleukin-10 family of cytokines and their role in the CNS. Front Cell Neurosci 12:458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron HA, Glover LR (2015) Adult neurogenesis: beyond learning and memory. Annu Rev Psychol 66:53–81

    Article  PubMed  Google Scholar 

  • Cayabyab R, Ramanathan R (2019) High unbound bilirubin for age: a neurotoxin with major effects on the develo** brain. Pediatr Res 85:183–190

    Article  CAS  PubMed  Google Scholar 

  • Colonna M, Butovsky O (2017) Microglia function in the Central Nervous System during Health and Neurodegeneration. Annu Rev Immunol 35:441–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornet MC, Kemper AR, Maisels MJ, Watchko J, Newman TB (2022) Neonatal hyperbilirubinemia and bilirubin neurotoxicity: what can be learned from the database analysis? Pediatr Res 92:1204

    Article  PubMed  Google Scholar 

  • Denoth-Lippuner A, Jessberger S (2021) Formation and integration of new neurons in the adult hippocampus. Nat Rev Neurosci 22:223–236

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Aparicio I, Paris I, Sierra-Torre V, Plaza-Zabala A, Rodriguez-Iglesias N, Marquez-Ropero M, Beccari S, Huguet P, Abiega O, Alberdi E, Matute C, Bernales I, Schulz A, Otrokocsi L, Sperlagh B, Happonen KE, Lemke G, Maletic-Savatic M, Valero J, Sierra A (2020) Microglia actively remodel adult hippocampal neurogenesis through the phagocytosis secretome. J Neurosci 40:1453–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes A, Falcao AS, Abranches E, Bekman E, Henrique D, Lanier LM, Brites D (2009) Bilirubin as a determinant for altered neurogenesis, neuritogenesis, and synaptogenesis. Dev Neurobiol 69:568–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fielder E, Tweedy C, Wilson C, Oakley F, LeBeau FEN, Passos JF, Mann DA, von Zglinicki T, Jurk D (2020) Anti-inflammatory treatment rescues memory deficits during aging in nfkb1(-/-) mice. Aging Cell 19:e13188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gage FH, Temple S (2013) Neural stem cells: generating and regenerating the brain. Neuron 80:588–601

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Ure K, Ables JL, Lagace DC, Nave KA, Goebbels S, Eisch AJ, Hsieh J (2009) Neurod1 is essential for the survival and maturation of adult-born neurons. Nat Neurosci 12:1090–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goncalves JT, Schafer ST, Gage FH (2016) Adult neurogenesis in the Hippocampus: from stem cells to Behavior. Cell 167:897–914

    Article  CAS  PubMed  Google Scholar 

  • Hansen TWR, Wong RJ, Stevenson DK (2020) Molecular physiology and pathophysiology of Bilirubin Handling by the blood, liver, intestine, and Brain in the Newborn. Physiol Rev 100:1291–1346

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT (2019) Microglia take centre stage in neurodegenerative disease. Nat Rev Immunol 19:79–80

    Article  CAS  PubMed  Google Scholar 

  • Hickman S, Izzy S, Sen P, Morsett L, El Khoury J (2018) Microglia in neurodegeneration. Nat Neurosci 21:1359–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hokkanen L, Launes J, Michelsson K (2014) Adult neurobehavioral outcome of hyperbilirubinemia in full term neonates-a 30 year prospective follow-up study. PeerJ 2, e294

  • Hufnagel RB, Le TT, Riesenberg AL, Brown NL (2010) Neurog2 controls the leading edge of neurogenesis in the mammalian retina. Dev Biol 340:490–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, Kuhn HG, Jessberger S, Frankland PW, Cameron HA, Gould E, Hen R, Abrous DN, Toni N, Schinder AF, Zhao X, Lucassen PJ, Frisen J (2018) Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 23:25–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyota T, Ingraham KL, Swan RJ, Jacobsen MT, Andrews SJ, Ikezu T (2012) AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP + PS1 mice. Gene Ther 19:724–733

    Article  CAS  PubMed  Google Scholar 

  • Li S, Liao Y, Dong Y, Li X, Li J, Cheng Y, Cheng J, Yuan Z (2021) Microglial deletion and inhibition alleviate behavior of post-traumatic stress disorder in mice. J Neuroinflammation 18:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liaury K, Miyaoka T, Tsumori T, Furuya M, Hashioka S, Wake R, Tsuchie K, Fukushima M, Limoa E, Tanra AJ, Horiguchi J (2014) Minocycline improves recognition memory and attenuates microglial activation in Gunn rat: a possible hyperbilirubinemia-induced animal model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 50:184–190

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Spangenberg EE, Tang B, Holmes TC, Green KN, Xu X (2021) Microglia Elimination Increases Neural Circuit Connectivity and activity in adult mouse cortex. J Neurosci 41:1274–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonnemann N, Hosseini S, Ohm M, Geffers R, Hiller K, Dinarello CA, Korte M (2022) IL-37 expression reduces acute and chronic neuroinflammation and rescues cognitive impairment in an Alzheimer’s disease mouse model. Elife 11.

  • Lukens JR, Eyo UB (2022) Microglia and Neurodevelopmental disorders. Annu Rev Neurosci 45:425–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D (2014) Neuroinflammation: the role and consequences. Neurosci Res 79:1–12

    Article  CAS  PubMed  Google Scholar 

  • Miller SM, Sahay A (2019) Functions of adult-born neurons in hippocampal memory interference and indexing. Nat Neurosci 22:1565–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyata T, Maeda T, Lee JE (1999) NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 13:1647–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mordelt A, de Witte LD (2023) Microglia-mediated synaptic pruning as a key deficit in neurodevelopmental disorders: hype or hope? Curr Opin Neurobiol 79:102674

    Article  CAS  PubMed  Google Scholar 

  • Muzio L, Viotti A, Martino G (2021) Microglia in Neuroinflammation and Neurodegeneration: from understanding to Therapy. Front Neurosci 15:742065

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikolopoulos D, Manolakou T, Polissidis A, Filia A, Bertsias G, Koutmani Y, Boumpas DT (2023) Microglia activation in the presence of intact blood-brain barrier and disruption of hippocampal neurogenesis via IL-6 and IL-18 mediate early diffuse neuropsychiatric lupus. Ann Rheum Dis 82:646–657

    Article  CAS  PubMed  Google Scholar 

  • Olusanya BO, Teeple S, Kassebaum NJ (2018) The contribution of neonatal jaundice to global child mortality: findings from the GBD 2016 study. Pediatrics 141

  • Park DS, Kozaki T, Tiwari SK, Moreira M, Khalilnezhad A, Torta F, Olivie N, Thiam CH, Liani O, Silvin A, Phoo WW, Gao L, Triebl A, Tham WK, Goncalves L, Kong WT, Raman S, Zhang XM, Dunsmore G, Dutertre CA, Lee S, Ong JM, Balachander A, Khalilnezhad S, Lum J, Duan K, Lim ZM, Tan L, Low I, Utami KH, Yeo XY, Di Tommaso S, Dupuy JW, Varga B, Karadottir RT, Madathummal MC, Bonne I, Malleret B, Binte ZY, Da W, Tan N, Wong Y, Zhang WJ, Chen J, Sobota J, Howland RM, Ng SW, Saltel LG, Castel F, Grill D, Minard J, Albani V, Chan S, Thion JKY, Jung MS, Wenk SY, Pouladi MR, Pasqualini MA, Angeli C, Cexus V, O.N.F., Ginhoux F (2023) iPS-cell-derived microglia promote brain organoid maturation via cholesterol transfer. Nature 623, 397–405

  • Parras CM, Galli R, Britz O, Soares S, Galichet C, Battiste J, Johnson JE, Nakafuku M, Vescovi A, Guillemot F (2004) Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J 23:4495–4505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Rodriguez DR, Blanco-Luquin I, Mendioroz M (2021) The Participation of Microglia in Neurogenesis: a review. Brain Sci 11

  • Pinto B, Morelli G, Rastogi M, Savardi A, Fumagalli A, Petretto A, Bartolucci M, Varea E, Catelani T, Contestabile A, Perlini LE, Cancedda L (2020) Rescuing over-activated Microglia restores cognitive performance in Juvenile animals of the Dp(16) mouse model of Down Syndrome. Neuron 108:887–904e812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qattea I, Farghaly MAA, Elgendy M, Mohamed MA, Aly H (2022) Neonatal hyperbilirubinemia and bilirubin neurotoxicity in hospitalized neonates: analysis of the US database. Pediatr Res 91:1662–1668

    Article  CAS  PubMed  Google Scholar 

  • Salta E, Lazarov O, Fitzsimons CP, Tanzi R, Lucassen PJ, Choi SH (2023) Adult hippocampal neurogenesis in Alzheimer’s disease: a roadmap to clinical relevance. Cell Stem Cell 30:120–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23:1018–1027

    Article  CAS  PubMed  Google Scholar 

  • Sedlak TW, Snyder SH (2004) Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 113:1776–1782

    Article  PubMed  Google Scholar 

  • Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, Fu T, Worringer K, Brown HE, Wang J, Kaykas A, Karmacharya R, Goold CP, Sheridan SD, Perlis RH (2019) Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci 22:374–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta P (2013) The Laboratory Rat: relating its Age with Human’s. Int J Prev Med 4:624–630

    PubMed  PubMed Central  Google Scholar 

  • Song S, Hu Y, Gu X, Si F, Hua Z (2014) A novel newborn rat kernicterus model created by injecting a bilirubin solution into the cisterna magna. PLoS ONE 9, e96171

  • Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI, Chang EF, Gutierrez AJ, Kriegstein AR, Mathern GW, Oldham MC, Huang EJ, Garcia-Verdugo JM, Yang Z, Alvarez-Buylla A (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555:377–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046

    Article  CAS  PubMed  Google Scholar 

  • Terreros-Roncal J, Moreno-Jimenez EP, Flor-Garcia M, Rodriguez-Moreno CB, Trinchero MF, Cafini F, Rabano A, Llorens-Martin M (2021) Impact of neurodegenerative diseases on human adult hippocampal neurogenesis. Science 374:1106–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Zhang H, Liang J, Huang J, Chen N (2023) Exercise suppresses neuroinflammation for alleviating Alzheimer’s disease. J Neuroinflammation 20:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Watchko JF, Tiribelli C (2013) Bilirubin-induced neurologic damage–mechanisms and management approaches. N Engl J Med 369:2021–2030

    Article  CAS  PubMed  Google Scholar 

  • Wong FK, Favuzzi E (2023) The brain’s polymath: emerging roles of microglia throughout brain development. Curr Opin Neurobiol 79:102700

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, **ao D, Mao Q, **a H (2023) Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 8:267

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Sun R, Sun C, Gu M, Guo C, Zhang J, Du Y, Gu H, Liu Q (2020) Minocycline protects neurons against glial cells-mediated bilirubin neurotoxicity. Brain Res Bull 154:102–105

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from National Natural Science Foundation of China [Grant number: 81971426] and Technological Innovation and Applied Development Project of Science and Technology Bureau of Chongqing [Grant number: CSTB2022TIAD-KPX0147].

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and Z.Y.H. designed the study. Y.Z., S.Y.L., L.L., H.M.H. performed the experiments. Y.Z., S.Y.L., and Z.Y.H. analyzed the data. Z.Y.H. and Z.F. supervised the study. Y.Z., Z.F. and Z.Y.H. wrote the manuscript. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Zhou Fu or Ziyu Hua.

Ethics declarations

Ethical Approval

All animal procedures were approved by the Animal Care Professional Committee of Chongqing Medical University (permit number: SYXK2022-0016).

Consent for Publication

Not applicable.

Consent to Participate

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, S., Li, L. et al. Inhibition of Microglial Activation Ameliorates Inflammation, Reduced Neurogenesis in the hippocampus, and Impaired Brain Function in a Rat Model of Bilirubin Encephalopathy. J Neuroimmune Pharmacol 19, 23 (2024). https://doi.org/10.1007/s11481-024-10124-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11481-024-10124-y

Keywords

Navigation