Log in

A Highly Sensitive Long-Range Surface Plasmon Resonance Biosensor for the Determination of Hemoglobin Content in Human Blood

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A surface plasmon resonance (SPR) biosensor with Kretschmann configuration and wide-range detection capability for measuring hemoglobin content in human blood has been proposed. The biosensor utilizes BK7 prism/Ag/α-SnSe/Ag/graphene architecture to detect hemoglobin concentration in human blood samples. The graphene layer was incorporated into the original structure to enhance the sensitivity of the device. Furthermore, layers were optimized, and the transfer matrix method determined the device’s reflectance. A high sensitivity of 184 degree.RIU−1 was obtained for the original structure, which increased to 187 degree.RIU−1 after including one graphene layer at a refractive index (RI) of 1.34 and 1.37. It was also found that incorporating more graphene layers enhanced the selectivity further, which came at the expense of compromising the quality factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

Code Availability

Not applicable.

References

  1. Rahman MS, Anower MS, Bashar LB, Rikta KA (2017) Sensitivity analysis of graphene coated surface plasmon resonance biosensors for biosensing applications. Sens Bio-Sensing Res 16:41–45. https://doi.org/10.1016/j.sbsr.2017.11.001

    Article  Google Scholar 

  2. Sahu S, Ali J, Singh G (2017) Refractive index biosensor using sidewall gratings in dual-slot waveguide. Opt Commun 402:408–412. https://doi.org/10.1016/j.optcom.2017.06.051

    Article  ADS  CAS  Google Scholar 

  3. Reynolds T, Riesen N, Meldrum A, Fan X, Hall JMM, Monro TM, François A (2017) Fluorescent and lasing whispering gallery mode microresonators for sensing applications. Laser Photon Rev 11:1600265. https://doi.org/10.1002/lpor.201600265

    Article  ADS  CAS  Google Scholar 

  4. Kang TY, Lee W, Ahn H, Shin D-M, Kim C-S, Oh J-W, Kim D, Kim K (2017) Plasmon-coupled whispering gallery modes on nanodisk arrays for signal enhancements. Sci Rep 7:11737. https://doi.org/10.1038/s41598-017-12053-8

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shushama KN, Rana MM, Inum R, Hossain MB (2017) Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: simulation analysis. Opt Commun 383:186–190. https://doi.org/10.1016/j.optcom.2016.09.015

    Article  ADS  CAS  Google Scholar 

  6. **nglong Y, Dingxin W, Zibo Y (2003) Simulation and analysis of surface plasmon resonance biosensor based on phase detection. Sensors Actuators B Chem 91:285–290. https://doi.org/10.1016/S0925-4005(03)00105-9

    Article  CAS  Google Scholar 

  7. Block ID, Ganesh N, Lu M, Cunningham BT (2008) A sensitivity model for predicting photonic crystal biosensor performance. IEEE Sens J 8:274–280. https://doi.org/10.1109/JSEN.2008.917127

    Article  ADS  CAS  Google Scholar 

  8. Nejat M, Nozhat N (2020) Multi-band MIM refractive index biosensor based on Ag-air grating with equivalent circuit and T-matrix methods in near-infrared region. Sci Rep 10:6357. https://doi.org/10.1038/s41598-020-63459-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jahan N, Rahman MM, Ahsan M, Based MA, Rana MM, Gurusamy S, Haider J (2021) Photonic crystal fiber based biosensor for Pseudomonas bacteria detection: a simulation study. IEEE Access 9:42206–42215. https://doi.org/10.1109/ACCESS.2021.3063691

    Article  Google Scholar 

  10. Dash JN, Jha R (2015) On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance. Plasmonics 10:1123–1131. https://doi.org/10.1007/s11468-015-9912-7

    Article  CAS  Google Scholar 

  11. Hasan M, Akter S, Rifat A, Rana S, Ali S (2017) A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance. Photonics 4:18. https://doi.org/10.3390/photonics4010018

    Article  CAS  Google Scholar 

  12. Chaudhary VS, Kumar D, Mishra GP, Sharma S, Kumar S (2022) Plasmonic biosensor with gold and titanium dioxide immobilized on photonic crystal fiber for blood composition detection. IEEE Sens J 22:8474–8481. https://doi.org/10.1109/JSEN.2022.3160482

    Article  ADS  CAS  Google Scholar 

  13. Hasan MR, Akter S, Rifat AA, Rana S, Ahmed K, Ahmed R, Subbaraman H, Abbott D (2018) Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor. IEEE Sens J 18:133–140. https://doi.org/10.1109/JSEN.2017.2769720

    Article  ADS  CAS  Google Scholar 

  14. Quan H, Guo Z (2005) Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors. J Quant Spectrosc Radiat Transf 93:231–243. https://doi.org/10.1016/j.jqsrt.2004.08.023

    Article  ADS  CAS  Google Scholar 

  15. Yesudasu V, Pradhan HS, Pandya RJ (2021) Recent progress in surface plasmon resonance based sensors: a comprehensive review. Heliyon 7:e06321. https://doi.org/10.1016/j.heliyon.2021.e06321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift Für Phys A Hadron Nucl 216:398–410. https://doi.org/10.1007/BF01391532

    Article  ADS  CAS  Google Scholar 

  17. Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light. Zeitschrift Fur Naturforsch Sect A J Phys Sci 23:2135–2136. https://doi.org/10.1515/zna-1968-1247

    Article  ADS  CAS  Google Scholar 

  18. Lee Y, Kim J, Sim S, Llamas-Garro I, Kim J (2021) Air-gap interrogation of surface plasmon resonance in Otto configuration. Micromachines 12:998. https://doi.org/10.3390/mi12080998

    Article  PubMed  PubMed Central  Google Scholar 

  19. Karki B, Uniyal A, Chauhan B, Pal A (2022) Sensitivity enhancement of a graphene, zinc sulfide-based surface plasmon resonance biosensor with an Ag metal configuration in the visible region. J Comput Electron. https://doi.org/10.1007/s10825-022-01854-4

    Article  Google Scholar 

  20. Vasimalla Y, Pradhan HS, Pandya RJ, Saikumar K, Anwer TMK, Rashed ANZ, Hossain MA (2023) Titanium dioxide-2D nanomaterial based on the surface plasmon resonance (SPR) biosensor performance signature for infected red cells detection. Plasmonics. https://doi.org/10.1007/s11468-023-01885-y

    Article  Google Scholar 

  21. Yesudasu V, Pradhan HS (2022) Performance enhancement of a novel surface plasmon resonance biosensor using thallium bromide. IEEE Trans Nanobioscience 21:206–215. https://doi.org/10.1109/TNB.2021.3114225

    Article  CAS  PubMed  Google Scholar 

  22. Taya SA, Daher MG, Colak I, Patel SK, Pal A, Almawgani AHM, Ahmed G (2023) Highly sensitive sensor based on SPR nanostructure employing graphene and perovskite layers for the determination of blood hemoglobin concentration. Optik (Stuttg) 281:170857. https://doi.org/10.1016/j.ijleo.2023.170857

    Article  ADS  CAS  Google Scholar 

  23. Almawgani AHM, Uniyal A, Sarkar P, Srivastava G, Alzahrani A (2023) Creatinine detection by surface plasmon resonance sensor using layers of cerium oxide and graphene over conventional kretschmann configuration. Plasmonics. https://doi.org/10.1007/s11468-023-01891-0

    Article  PubMed  PubMed Central  Google Scholar 

  24. Almawgani AHM, Sarkar P, Pal A, Srivastava G, Uniyal A, Alhawari ARH, Muduli A (2023) Titanium disilicide, black phosphorus–based surface plasmon resonance sensor for dengue detection. Plasmonics. https://doi.org/10.1007/s11468-023-01856-3

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pal A, Uniyal A, Sarkar P, Srivastava G, Yadav HL, Dhiman G, Taya SA, Muduli A (2023) Detecting binary mixtures of sulfolane with ethylene glycol, diethylene glycol, and polyethylene glycol in water using surface plasmon resonance sensor: a numerical investigation. Plasmonics. https://doi.org/10.1007/s11468-023-02054-x

    Article  Google Scholar 

  26. Mohanty G, Akhtar J, Sahoo BK (2016) Effect of semiconductor on sensitivity of a graphene-based surface plasmon resonance biosensor. Plasmonics 11:189–196. https://doi.org/10.1007/s11468-015-0033-0

    Article  CAS  Google Scholar 

  27. Singh Y, Paswan MK, Raghuwanshi SK (2021) Sensitivity enhancement of SPR sensor with the black phosphorus and graphene with Bi-layer of gold for chemical sensing. Plasmonics. https://doi.org/10.1007/s11468-020-01315-3

    Article  Google Scholar 

  28. Guo Z, Gu H, Yu Y, Wei Z, Liu S (2022) Broadband and incident-angle-modulation near-infrared polarizers based on optically anisotropic SnSe. Nanomaterials 13:134. https://doi.org/10.3390/nano13010134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ansari G, Pal A, Srivastava AK, Verma G (2023) Detection of hemoglobin concentration in human blood samples using a zinc oxide nanowire and graphene layer heterostructure based refractive index biosensor. Opt Laser Technol 164:109495. https://doi.org/10.1016/j.optlastec.2023.109495

    Article  CAS  Google Scholar 

  30. Uniyal A, Srivastava G, Sarkar P, Kumar M, Singh S (2023) Fluorinated graphene and CNT-based surface plasmon resonance sensor for detecting the viral particles of SARS-CoV-2. Phys B Condens Matter 669:415282. https://doi.org/10.1016/j.physb.2023.415282

    Article  CAS  Google Scholar 

  31. Almawgani AHM, Uniyal A, Sarkar P, Srivastava G, Pal A, Alhawari ARH, Taya SA, Muduli A (2023) Sensitivity enhancement of optical plasmon-based sensor for detection of the hemoglobin and glucose: a numerical approach. Opt Quantum Electron 55:963

    Article  CAS  Google Scholar 

  32. Hma Salah N (2023) Sensitivity enhancement of the surface plasmon resonance–based gas sensing by few layers of black phosphorus. Plasmonics 18:2225–2233

    Article  CAS  Google Scholar 

  33. Panda A, Pukhrambam PD (2021) Modeling of high-performance SPR refractive index sensor employing novel 2D materials for detection of malaria pathogens. IEEE Trans Nanobioscience. https://doi.org/10.1109/tnb.2021.3115906

    Article  PubMed  Google Scholar 

  34. Karki B, Pal A, Singh Y, Sharma S (2022) Sensitivity enhancement of surface plasmon resonance sensor using 2D material barium titanate and black phosphorus over the bimetallic layer of Au, Ag, and Cu. Opt Commun 508:127616. https://doi.org/10.1016/j.optcom.2021.127616

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding program grant code (NU/RG/SERC/12/7).

Author information

Authors and Affiliations

Authors

Contributions

Debashish Pal: conceptualization (equal) and writing—review and editing (equal); Abdulkarem H. M. Almawgani: methodology (equal) and writing—review and editing (equal); Soumee Das: investigation (equal) and methodology (equal); Amrindra Pal: investigation (equal) and methodology (equal); Manoj Kumar: formal analysis (equal) and response to review comment preparation; Arun Uniyal: formal analysis (equal) and methodology (equal); Ahmad Alzahrani: supervision (lead) and investigation.

Corresponding author

Correspondence to Amrindra Pal.

Ethics declarations

Ethics Approval

Not applicable. The work presented in this manuscript is mathematical modeling only for the proposed biosensor. No experiment was performed on the human body and living organisms/animals. So, ethical approval from an ethical committee is not required.

Consent to Participate

I am willing to participate in the work presented in this manuscript.

Consent for Publication

The authors have given their consent to publish this work.

Competing Interests

The author declares that he has no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, D., Almawgani, A.H.M., Das, S. et al. A Highly Sensitive Long-Range Surface Plasmon Resonance Biosensor for the Determination of Hemoglobin Content in Human Blood. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02243-2

Keywords

Navigation