Log in

Polarization Properties in AlGaN/GaN HEMT-Array with a Shifted Gate

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We describe the plasmon resonances of AlGaN/GaN HEMT-array with a shifted gate at THz frequencies. By altering gate voltage and gate length, we obtained absorption spectra at different gate positions using the Drude dispersion to model the conductive channel layer. We observed that the asymmetry of the device’s gate position has no effect on the first-order mode of absorption but significantly impacts the second-order or higher-order modes. Through the electric field distribution, it can be found that in the first-order mode, different gate positions do not affect the electric field distribution. But in higher-order modes, when the gate is close to the source or drain, the 2D plasmons in the gated region will couple with the ungated 2D plasmons in the source and drain regions. In our simulation, the asymmetric gate position will have a higher absorption peak in the high-order mode. At the same time, the asymmetric gate structure under high-order mode can also reach higher modulation depth. The studies of these characteristics may have promising applications including high-responsivity quantum-dot THz detection, THz modulator, and other electrically tunable THz devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Shur M (2011) Silicon and nitride FETs for THz sensing. Proc SPIE 8031:80310J. https://doi.org/10.1117/12.883309

    Article  CAS  Google Scholar 

  2. Tonouchi M (2007) Cutting-edge terahertz technology. Nat Photonics 1:97–105. https://doi.org/10.1038/nphoton.2007.3

    Article  CAS  Google Scholar 

  3. Cai M, Liu H, Wang S, Wang Y, Wang D, Zhao D, Guo W (2022) Polarization properties in grating-gated AlN/GaN HEMTs at mid-infrared frequencies. Opt Express 30:14748–14758. https://doi.org/10.1364/OE.453991

    Article  CAS  PubMed  Google Scholar 

  4. Yu A, Guo X, Balakin AV, Shkurinov AP, Zhu Y (2020) Multiband and broadband active controllable terahertz absorption in dual-side grating-gate graphene field-effect transistors. Nanotechnol 31:284001. https://doi.org/10.1088/1361-6528/ab86ed

    Article  CAS  Google Scholar 

  5. Dyakonov MI, Shur MS (1996) Plasma wave electronics: novel terahertz devices using two dimensional electron fluid. IEEE Trans Electron Devices 43:1640–1645. https://doi.org/10.1088/10.1109/16.536809

    Article  CAS  Google Scholar 

  6. Knap W, Deng Y, Rumyantsev S, Lü JQ, Shur MS, Saylor C, Brunel LC (2002) Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor. Appl Phys Lett 80:3433–3435. https://doi.org/10.1063/1.1525851

    Article  CAS  Google Scholar 

  7. Muravjov AV, Veksler DB, Popov VV, Polischuk OV, Pala N, Hu X, Gaska R, Saxena H, Peale RE, Shur MS (2010) Temperature dependence of plasmonic terahertz absorption in grating-gate gallium-nitride transistor structures. Appl Phys Lett 96:042105. https://doi.org/10.1063/1.3292019

    Article  CAS  Google Scholar 

  8. **ng R, Wang H, Zhou J, Yang A, Li Y, Yu G, Zeng Z, Zhang X, Zhang B (2023) Investigation of temperature-dependent polarization properties in grating-gate AlGaN/GaN heterostructures by Drude conductivity at THz frequency. Opt Eng 62:065108–065108. https://doi.org/10.1117/1.OE.62.6.065108

    Article  CAS  Google Scholar 

  9. **ng R, Guo H, Yu G, Zhou J, Yang A, Dai S, Zeng Z, Zhang X, Zhang B (2023) Polarization properties in GaN double-channel HEMTs at mid-infrared frequencies. Plasmonics 1–10. https://doi.org/10.1007/s11468-023-02062-x

  10. Popov VV, Shur MS, Tsymbalov GM, Fateev DV (2007) Higher-order plasmon resonances in GaN-based field-effect transistor arrays. Int J High Speed Electron Syst 17:557–566. https://doi.org/10.1142/S0129156407004746

    Article  CAS  Google Scholar 

  11. Dyakonov M, Shur M (1993) Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys Rev Lett 71:2465. https://doi.org/10.1103/PhysRevLett.71.2465

    Article  CAS  PubMed  Google Scholar 

  12. Kim S, Zimmerman JD, Focardi P, Gossard AC, Wu DH, Sherwin MS (2008) Room temperature terahertz detection based on bulk plasmons in antenna-coupled GaAs field effect transistors. Appl Phys Lett 92:253508. https://doi.org/10.1063/1.2947587

    Article  CAS  Google Scholar 

  13. Gan X, Shiue RJ, Gao Y, Meric I, Heinz TF, Shepard K, Hone J, Assefa S, Englund D (2013) Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photonics 7:883–887. https://doi.org/10.1038/nphoton.2013.253

    Article  CAS  Google Scholar 

  14. Bandurin DA, Gayduchenko I, Cao Y, Moskotin M, Principi A, Grigorieva IV, Goltsman G, Fedorov G, Svintsov D (2018) Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors. Appl Phys Lett 112:141101. https://doi.org/10.1063/1.5018151

    Article  CAS  Google Scholar 

  15. Lisauskas A, Pfeiffer U, Öjefors E, Bolìvar PH, Glaab D, Roskos HG (2009) Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J Appl Phys 105:114511. https://doi.org/10.1063/1.3140611

    Article  CAS  Google Scholar 

  16. Viti L, Hu J, Coquillat D, Knap W, Tredicucci A, Politano A, Vitiello MS (2015) Black phosphorus terahertz photodetectors. Adv Mater 27:5567–5572. https://doi.org/10.1002/adma.201502052

    Article  CAS  PubMed  Google Scholar 

  17. Barut B, Cantos-Roman X, Crabb J, Kwan CP, Dixit R, Arabchigavkani N, Yin S, Nathawat J, He K, Randle MD, Vandrevala F, Sugaya T, Einarsson E, Jornet JM, Bird JP, Aizin GR (2022) Asymmetrically engineered nanoscale transistors for on-demand sourcing of terahertz plasmons. Nano Lett 22:2674–2681. https://doi.org/10.1021/acs.nanolett.1c04515

    Article  CAS  PubMed  Google Scholar 

  18. Crabb J, Roman XC, Jornet J, Aizin GR (2022) Plasma instability in graphene field-effect transistors with a shifted gate. Appl Phys Lett 121:143502. https://doi.org/10.1063/5.0108266

    Article  CAS  Google Scholar 

  19. Knap W, Lusakowski J, Parenty T, Bollaert S, Cappy A, Popov VV, Shur MS (2004) Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors. Appl Phys Lett 84:2331–2333. https://doi.org/10.1063/1.1689401

    Article  CAS  Google Scholar 

  20. Shabanov A, Moskotin M, Belosevich V, Matyushkin Y, Rybin M, Fedorov G, Svintsov D (2021) Optimal asymmetry of transistor-based terahertz detectors. Appl Phys Lett 119:163505. https://doi.org/10.1063/5.0063870

    Article  CAS  Google Scholar 

  21. Korotyeyev VV, Kochelap VA, Kaliuzhnyi VV, Belyaev AE (2022) High-frequency conductivity and temperature dependence of electron effective mass in AlGaN/GaN heterostructures. Appl Phys Lett 120:252103. https://doi.org/10.1063/5.0093292

    Article  CAS  Google Scholar 

  22. Zhang Z, Yu G, Zhang X, Deng X, Li S, Fan Y, Sun S, Song L, Tan S, Wu D, Li W, Huang W, Fu K, Cai Y, Sun Q, Zhang S (2016) Studies on high-voltage GaN-on-Si MIS-HEMTs using LPCVD Si 3 N 4 as gate dielectric and passivation layer. IEEE Trans Electron Devices 63:731–738. https://doi.org/10.1109/TED.2015.2510445

    Article  CAS  Google Scholar 

  23. Yu Y, Zheng Z, Qin H, Sun J, Huang Y, Li X, Zhang Z, Wu D, Cai Y, Zhang B (2018) Observation of terahertz plasmon and plasmon-polariton splitting in a grating-coupled AlGaN/GaN heterostructure. Opt Express 26:31794–31807. https://doi.org/10.1364/OE.26.031794

    Article  CAS  PubMed  Google Scholar 

  24. Shrekenhamer D, Rout S, Strikwerda AC, Bingham C, Averitt RD, Sonkusale S, Padilla WJ (2011) High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. Opt Express 19:9968–9975. https://doi.org/10.1364/OE.19.009968

    Article  CAS  PubMed  Google Scholar 

  25. Huang Y, Yu Y, Qin H, Sun J, Zhang Z, Li X, Huang J, Cai Y (2016) Plasmonic terahertz modulator based on a grating-coupled two-dimensional electron system. Appl Phys Lett 109:201110. https://doi.org/10.1063/1.4967998

    Article  CAS  Google Scholar 

  26. Popov V, Polischuk O, Shur M (2005) Resonant excitation of plasma oscillations in a partially gated two-dimensional electron layer. J Appl Phys 98:033510. https://doi.org/10.1063/1.1954890

    Article  CAS  Google Scholar 

  27. Quispe HOC, Chanana A, Encomendero J, Zhu M, Trometer N, Nahata A, Jena D, **ng HG, Sensale-Rodriguez B (2018) Comparison of unit cell coupling for grating-gate and high electron mobility transistor array THz resonant absorbers. J Appl Phys 124:093101. https://doi.org/10.1063/1.5032102

    Article  CAS  Google Scholar 

  28. Popov VV, Fateev DV, Polischuk OV, Shur MS (2010) Enhanced electromagnetic coupling between terahertz radiation and plasmons in a grating-gate transistor structure on membrane substrate. Opt Express 18(16):16771–16776. https://doi.org/10.1364/OE.18.016771

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (Grant No. 92163204), Youth Innovation Promotion Association CAS (Grant No. 2020321), National Natural Science Foundation of China (Grant No. 61904192), and Fundamental Research Funds for the Central Universities (Grant No. WK5290000003).

Author information

Authors and Affiliations

Authors

Contributions

RX did the main work and drafted the manuscript. PZ made suggestions for revising the content of the article. GY worked on the calculation method of the simulation model and theoretical formula derivation. HG polished the manuscript. JZ analyzed the data. AY worked on the simulation and proposed the initial set up. SD visualized the data. ZZ supported the funding of this research. XZ participated in the discussion and put forward a lot of useful suggestions. BZ thoughtfully guided the research direction and research content.

Corresponding authors

Correspondence to Guohao Yu or ** Zhang.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ng, R., Zhang, P., Guo, H. et al. Polarization Properties in AlGaN/GaN HEMT-Array with a Shifted Gate. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02195-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02195-7

Keywords

Navigation