Log in

Investigating the Optical Properties of Graphene in a Grating Structure as an Optical Absorber and Optimized the Dimensions of a Single-Layer Graphene

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Graphene is today one of the most used materials in the production of optical devices such as photovoltaic cells, sensors and absorbers. Graphene’s unique ability to generate superb surface plasmons creates unique potential for using in absorbent materials. Graphene-based absorbers are very efficient for the application of absorber sensors, solar absorbers and terahertz absorbers. Absorber sensors by using the tunable properties of graphene are applicable in biosensors for the detection of hemoglobin, urine biomolecules and are also applicable in medical and chemical applications. Solar absorbers are suitable for use in energy harvesting devices and clean energy production. The use of graphene layer in the design of the solar absorber gives a very efficient absorption response and a suitable bandwidth. THz absorbers are applicable in sensing and imaging devices. In this research, we investigated the optical properties of graphene in a grating structure as an optical absorber and optimized the dimensions of the structure to achieve greater absorption of a single-layer graphene. We place gold nanoribbons on top of the single-layer graphene and place an anti-reflection layer on top of the structure to prevent reflection and increase light absorption by the structure. At first, this structure is examined under the TM plane wave radiation with 0° incident angle. In the next step, we optimized the dimensions of the grating by changing the width of the nanoribbons and the period of repetition of the structure. The processed structure increased the single layer graphene absorption by 60% and total absorption up to 80%. The total absorption of the optimal structure at a wavelength of about 590 nm, 100% absorption of the structure was observed. Next, we examined the behavior of graphene absorption peaks in the near-infrared area by changing the angle of incident light with the values of 15, 30, 45, 60, 75, and 90°. By analyzing graphene behavior in this area, we saw that by changing the dimensions of gold nanoribbons, the wavelength of absorption peak can be controlled from 1000 to 1600 nm. In the next step, we found that the absorption peak of structure is not sensitive to the angle of incident light, and there is no significant difference in the maximum absorption of graphene layer by changing the angle of the incident light. With high efficiency and low-angle sensitivity, this absorber has a great ability to absorb solar radiation and has rich applications in solar cells, infrared and thermal trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The research data associated with a paper is available, and under what conditions the data can be accessed.

References

  1. Ghobadi A et al (2018) Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth. Photonics Res 6(3):168–176

    Article  CAS  Google Scholar 

  2. Zhang Y et al (2015) Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies. Sci Rep 5(1):18463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. **a S-X et al (2017) Multi-band perfect plasmonic absorptions using rectangular graphene gratings. Opt Lett 42(15):3052–3055

    Article  CAS  PubMed  Google Scholar 

  4. Yong Z et al (2016) Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications. Sci Rep 6(1):24063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lei L et al (2018) Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt Express 26(5):5686–5693

    Article  CAS  PubMed  Google Scholar 

  6. Zhou J et al (2018) Perfect ultraviolet absorption in graphene using the magnetic resonance of an all-dielectric nanostructure. Opt Express 26(14):18155–18163

    Article  CAS  PubMed  Google Scholar 

  7. Yildirim DU, Ghobadi A, Ozbay E (2018) Near-absolute polarization insensitivity in graphene based ultra-narrowband perfect visible light absorber. Sci Rep 8(1):15210

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen Y et al (2015) Tunable near-infrared plasmonic perfect absorber based on phase-change materials. Photonics Res 3(3):54–57

    Article  CAS  Google Scholar 

  9. Toudert J et al (2018) Mid-to-far infrared tunable perfect absorption by a sub-λ/100 nanofilm in a fractal phasor resonant cavity. Opt Express 26(26):34043–34059

    Article  CAS  PubMed  Google Scholar 

  10. Liu H et al (2019) Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber. Sci Rep 9(1):5751

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jablan M, Buljan H, Soljačić M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80(24):245435

    Article  Google Scholar 

  12. Rodrigo D et al (2015) Mid-infrared plasmonic biosensing with graphene. Science 349(6244):165–168

    Article  CAS  PubMed  Google Scholar 

  13. Moskovits M (1985) Surface-enhanced spectroscopy Reviews of modern physics 57(3):783

    Article  CAS  Google Scholar 

  14. Hillenbrand R, Taubner T, Keilmann F (2002) Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418(6894):159–162

    Article  CAS  PubMed  Google Scholar 

  15. Dintinger J et al (2005) Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys Rev B 71(3):035424

    Article  Google Scholar 

  16. Gao J, Liu J, Yang H, Liu H, Zeng G, Huang B et al (2023) Anisotropic medium sensing controlled by bound states in the continuum in polarization-independent metasurfaces. Optics Express 31(26):44703–44719. https://doi.org/10.1364/OE.509673

    Article  Google Scholar 

  17. Liu Z et al (2017) Ultra-broadband tunable resonant light trap** in a two-dimensional randomly microstructured plasmonic-photonic absorber. Sci Rep 7(1):43803

    Article  PubMed  PubMed Central  Google Scholar 

  18. Omelyanovich M, Ra’di Y, Simovski C (2015) Perfect plasmonic absorbers for photovoltaic applications. J Opt 17(12)

  19. West PR et al (2010) Searching for better plasmonic materials. Laser Photonics Rev 4(6):795–808

    Article  CAS  Google Scholar 

  20. Wang F et al (2008) Gate-variable optical transitions in graphene. Sci 320(5873):206–209

    Article  CAS  Google Scholar 

  21. Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8(2):1086–1101

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Zhang Z, Lu H (2022) Structure design and properties investigation of Bi2O2Se/graphene van der Waals heterojunction from first-principles study. Surf Interfaces 33:102289. https://doi.org/10.1016/j.surfin.2022.102289

  23. Ooi KJ et al (2016) Ultrafast, broadband, and configurable midinfrared all-optical switching in nonlinear graphene plasmonic waveguides. APL Photonics 1(4)

  24. Li W et al (2014) Ultrafast all-optical graphene modulator. Nano Lett 14(2):955–959

    Article  CAS  PubMed  Google Scholar 

  25. Chang H, Wu H (2013) Graphene-based nanomaterials: synthesis, properties, and optical and optoelectronic applications. Adv Func Mater 23(16):1984–1997

    Article  CAS  Google Scholar 

  26. Bonaccorso F et al (2010) Graphene photonics and optoelectronics. Nat Photonics 4(9):611–622

    Article  CAS  Google Scholar 

  27. Guo CC et al (2016) Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures. Adv Opt Mater 4(12):1955–1960

    Article  CAS  Google Scholar 

  28. Wood RW (1902) XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Lond Edinb Dublin Philos Mag J Sci 4(21):396–402

    Article  Google Scholar 

  29. Li H, Niu J, Wang G (2019) Dual-band, polarization-insensitive metamaterial perfect absorber based on monolayer graphene in the mid-infrared range. Res Phys 13

  30. Liang C et al (2019) A broadband and polarization-independent metamaterial perfect absorber with monolayer Cr and Ti elliptical disks array. Res Phys 15

  31. Liu Y, Liu Y, Wang M (2017) Design, optimization and application of small molecule biosensor in metabolic engineering. Front Microbiol 8:2012

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jiang C, Deng Z, Liu B, Li J, Han Z, Ma, Y.,... Ma Y (2022) Spin–orbit-engineered selective transport of photons in plasmonic nanocircuits with panda-patterned transporters. ACS Photonics 9(9):3089–3093. https://doi.org/10.1021/acsphotonics.2c00841

  33. Parmar J, Patel SK (2022) Encrypted and tunable graphene-based metasurface refractive index sensor. Microw Opt Technol Lett 64(1):77–82

    Article  Google Scholar 

  34. Zhang X, Tang Y, Zhang F, Lee C (2016) A novel aluminum-graphite dual-ion battery. Adv Energy Mater 6(11):1502588. https://doi.org/10.1002/aenm.201502588

  35. Patel SK et al (2021) Graphene-based plasmonic absorber for biosensing applications using gold split ring resonator metasurfaces. J Lightwave Technol 39(17):5617–5624

    Article  CAS  Google Scholar 

  36. Yu S, Yi W (2007) Single-walled carbon nanotubes as a chemical sensor for SO2 detection. IEEE Trans Nanotechnol 6(5):545–548

    Article  Google Scholar 

  37. Lan G, Tang L, Dong J, Nong J, Luo P, Li X,... Wei W (2023) Enhanced Asymmetric Light-Plasmon Coupling in Graphene Nanoribbons for High-Efficiency Transmissive Infrared Modulation. Laser Photonics Rev. https://doi.org/10.1002/lpor.202300469

  38. Shi X et al (2017) A novel method for the rapid detection of microbes in blood using pleurocidin antimicrobial peptide functionalized piezoelectric sensor. J Microbiol Methods 133:69–75

    Article  CAS  PubMed  Google Scholar 

  39. Grigorenko AN, Polini M, Novoselov K (2012) Graphene plasmonics. Nat Photonics 6(11):749–758

    Article  CAS  Google Scholar 

  40. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

    Article  CAS  PubMed  Google Scholar 

  41. Qiu Y, Shi M, Guo X, Li J, Wu J, Zhou Y,... Li Y (2023) Sensitivity improvement in the measurement of minor components by spatial confinement in fiber-optic laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 209:106800. https://doi.org/10.1016/j.sab.2023.106800

  42. Darmo J et al (2004) Imaging with a Terahertz quantum cascade laser. Opt Express 12(9):1879–1884

    Article  PubMed  Google Scholar 

  43. Federici JF et al (2005) THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond Sci Technol 20(7):S266

    Article  CAS  Google Scholar 

  44. Jiang W, Wang H, **e W, Qu Z (2023) Lithography alignment techniques based on Moiré Fringe. Photonics 10(4):351. https://doi.org/10.3390/photonics10040351

  45. Tittl A et al (2015) A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv Mater 27(31):4597–4603

    Article  CAS  PubMed  Google Scholar 

  46. Lu Y, Stegmaier M, Nukala P, Giambra MA, Ferrari S, Busacca A,... Agarwal R (2017) Mixed-mode operation of hybrid phase-change nanophotonic circuits. Nano Letters 17(1):150–155. https://doi.org/10.1021/acs.nanolett.6b03688

  47. Koppens FH, Chang DE, García de Abajo FJ (2011) Graphene plasmonics: a platform for strong light–matter interactions. Nano lett 11(8):3370–3377

    Article  CAS  PubMed  Google Scholar 

  48. Thongrattanasiri S, Koppens FH, De Abajo FJG (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108(4):047401

    Article  PubMed  Google Scholar 

  49. Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94(3)

  50. Zhao C, Cheung CF, Xu P (2020) High-efficiency sub-microscale uncertainty measurement method using pattern recognition. ISA Transactions 101:503–514. https://doi.org/10.1016/j.isatra.2020.01.038

  51. Cai Y, Zhu J, Liu QH (2015) Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers. Appl Phys Lett 106(4)

  52. Dean CR et al (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5(10):722–726

    Article  CAS  PubMed  Google Scholar 

  53. Zeitler M, Sienz S, Rauschenbach B (1999) Study of stress evolution of boron nitride films prepared by ion assisted deposition. J Vac Sci Technol A Vac Surf Films 17(2):597–602

    Article  CAS  Google Scholar 

  54. Fan Y et al (2018) Monolayer-graphene-based broadband and wide-angle perfect absorption structures in the near infrared. Sci Rep 8(1):13709

    Article  PubMed  PubMed Central  Google Scholar 

  55. Woessner A et al (2015) Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat Mater 14(4):421–425

    Article  CAS  PubMed  Google Scholar 

  56. Du S, **e H, Yin J, Fang T, Zhang S, Sun Y,... Zheng R (2023) Competition pathways of energy relaxation of hot electrons through coupling with optical, surface, and acoustic phonons. J Phys Chem C 127(4):1929–1936. https://doi.org/10.1021/acs.jpcc.2c07791

  57. Li Z, Zhang W, **ng F (2019) Graphene optical biosensors. Int J Mol Sci 20(10):2461

    Article  PubMed  PubMed Central  Google Scholar 

  58. Parmar J et al (2019) Graphene-silicon hybrid chirped-superstructure bragg gratings for far infrared frequency. Mat Res Express 6(6)

  59. Patel SK et al (2020) Graphene-based highly sensitive refractive index biosensors using C-shaped metasurface. IEEE Sens J 20(12):6359–6366

    Article  Google Scholar 

  60. Al-Ashi NE et al (2020) Optical fiber surrounded by a graphene layer as an optical sensor. Opt Quant Electron 52(3):187

    Article  CAS  Google Scholar 

  61. Patel SK et al (2020) Design of graphene metasurface based sensitive infrared biosensor. Sens Actuators A 301:111767

    Article  CAS  Google Scholar 

  62. Shushama KN et al (2017) Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: simulation analysis. Opt Commun 383:186–190

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the reviewers for their significant comments.

Author information

Authors and Affiliations

Authors

Contributions

Afroozeh wrote the main manuscript text and prepared figures.

Corresponding author

Correspondence to Abdolkarim Afroozeh.

Ethics declarations

Consent to Participate

The author participates in drafting the article or revising it critically for important intellectual content.

Consent for Publication

The author of this paper agrees to publish our theoretical research.

Conflict of Interest

Author declares no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afroozeh, A. Investigating the Optical Properties of Graphene in a Grating Structure as an Optical Absorber and Optimized the Dimensions of a Single-Layer Graphene. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-023-02164-6

Keywords

Navigation