Log in

Ag and Sn Nanoparticles to Enhance the Near-Infrared Absorbance of a-Si:H Thin Films

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Silver (Ag) and tin (Sn) nanoparticles (NPs) were deposited by thermal evaporation onto heated glass substrates with a good control of size, shape and surface coverage. This process has the advantage of allowing the fabrication of thin-film solar cells with incorporated NPs without vacuum break, since it does not require chemical processes or post-deposition annealing. The X-ray diffraction, TEM and SEM properties are correlated with optical measurements and amorphous silicon hydrogenated (a-Si:H) films deposited on top of both types of NPs show enhanced absorbance in the near-infrared. The results are interpreted with electromagnetic modelling performed with Mie theory. A broad emission in the near-infrared region is considerably increased after covering the Ag nanoparticles with an a-Si:H layer. Such effect may be of interest for possible down-conversion mechanisms in novel photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akimov YA, Koh WS, Ostrikov K (2009) Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express 17(12):10195–10205

    Article  CAS  Google Scholar 

  2. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101(9)

  3. Martin A, Green KE, Yoshihiro H, Wilhelm W (2011) Progress in photovoltaics: Research and applications Prog. Prog Photovolt Res Appl 19:84–92

    Article  Google Scholar 

  4. Stephan Fahr CR, Falk L (2010) Improving the efficiency of thin film tandem solar cells by plasmonic intermediate reflectors. Phot Nano: Fund Appl 8:291–296

    Article  Google Scholar 

  5. Lance K, Kelly EC, Lin Lin Z, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Google Scholar 

  6. Mendes MJ, Luque A, Tobias I, Marti A (2009) Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells. Appl Phys Lett 95:071105

    Article  Google Scholar 

  7. Yuriy A, Akimov WSK (2011) Design of Plasmonic nanoparticles for efficient subwavelength light trap** in thin-film solar cells. Plasmonics 6:155–161

    Article  Google Scholar 

  8. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264

    Article  CAS  Google Scholar 

  9. Nakayama K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells Appl. Phys Lett 93:121904

    Google Scholar 

  10. Skrabalak SE, Au L, Li X, **a Y (2007) Facile Synthesis of Ag Nanocubes and Au Nanocages. Nat Protoc 2:2182–2190

    Article  CAS  Google Scholar 

  11. Mendes MJ, Hernández E, Galicia IT, Veja AM and Luque A (2010) Embedment of metal nanoparticles in GaAs and Si for plasmonic absorption enhancement in intermediate band solar cells. in 25th European Photovoltaic Solar Energy Conference and Exhibition. 5th World Conf Photovoltaic Energy Convers

  12. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685–1706

    Article  CAS  Google Scholar 

  13. Iida T, Ishihara H (2003) Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition. Phys Rev Lett 90:057403

    Article  Google Scholar 

  14. Chang SS, Park DK (2002) Novel Sn powder preparation by spark processing and luminescence properties Mat. Sci Eng B 95:55

    Article  Google Scholar 

  15. Temple TL, Mahanama GDK, Reehal HS, Bagnall DM (2009) Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Sol Energ Mat Sol Cells 93:1978–1985

    Article  CAS  Google Scholar 

  16. Kjeldsen MM, Hansen JL, Pedersen TG, Gaiduk P, Larsen AN (2010) Tuning the plasmon resonance of metallic tin nanocrystals in Si-based materials. Appl Phys A 100(1):31–37

    Article  CAS  Google Scholar 

  17. Aguas H, Ram SK, Araujo A, Gaspar D, Vicente A, Filonovich SA, Fortunato E, Martins R, Ferreira I (2011) Silicon thin film solar cells on commercial tiles. Energy Environ Sci 4(11):4620–4632

    Article  CAS  Google Scholar 

  18. Ohring M (1992) The Materials Science of Thin films. Academic Press 195–247

  19. Scherrer P (1918) Göttinger Nachrichten Gesell 2:98

    Google Scholar 

  20. Refractive Index Database. http://refractiveindex.info. Accessed Nov 2012

  21. Bohren CF, Huffman DR (2004) Absorption and scattering of light by small particles. Wiley-VCH, Weinheim, ISBN: 9780471293408

    Google Scholar 

  22. Sun H, Yu M, Wang G, Sun X, Lian J (2012) Temperature-dependent morphology evolution and surface plasmon absorption of ultrathin gold island films. J Phys Chem C 116:9000–9008

    Article  CAS  Google Scholar 

  23. Pillai S, Green MA (2010) Plasmonics for photovoltaics applications. Sol Energy Mater Sol Cells 94:1481–1486

    Article  CAS  Google Scholar 

  24. West PR, Ishii S, Naik NGV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser & Photon Rev 4(6):1–13

  25. Palik E (1997) Handbook of optical constants of solids (5 volume set). Academic Press, San Diego

  26. Takeuchi K, Adachi S (2009) Optical properties of β-Sn films. J Appl Phys 105(7):073520

  27. Fu Q, Sun (2001) Mie theory for light scattering by a spherical particle in an absorbing medium. Appl Opt 40(9):1354–1361

    Article  CAS  Google Scholar 

  28. Boyd GT, Yu ZH, Shen YR (1986) Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys Rev B 33:7923–7936

    Article  CAS  Google Scholar 

  29. Na SH, Park CH (2010) First-principles study of the structural phase transition in Sn. J Kor Phys Soc 56(1):494–497

    CAS  Google Scholar 

  30. Adachi S (1989) Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, Al x Ga1−x As, and In1−x Ga x As y P1−y . J Appl Phys 66(12):813

    Article  CAS  Google Scholar 

  31. Ihm J, Cohen ML (1981) Equilibrium properties and the phase transition of grey and white tin. Phys Rev B 23(4):1576

    Article  CAS  Google Scholar 

  32. Kremer F, Luce FP, Fabrim ZE, Sanchez DF, Lang R, Zawislak FC, Fichtner PFP (1981) Tailoring the blue–violet photoluminescence from Sn-implanted SiO2 using a two-step annealing process. J Phys D Appl Phys 45:095304

    Article  Google Scholar 

  33. Yeshchenko OA, Dmitruk IM, Alexeenko AA, Losytskyy MY, Kotko AV, Pinchuk AO (2009) Size-dependent surface-plasmon-enhanced photoluminescence from silver nanoparticles embedded in silica. Phys Rev B 79:235438

    Article  Google Scholar 

  34. Moontragoon P, Vukmirovic N, Ikonic Z, Harrison P (2009) Electronic structure and optical transitions in Sn and SnGe quantum dots in a Si matrix. Microelect Journal 40:483–485

    Article  CAS  Google Scholar 

  35. Smitha SL, Nissamudeen KM, Philip D, Gopchandran KG (2008) Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim. Acta, Part A 71(1):186–190

    Article  CAS  Google Scholar 

  36. Minissale S (2009) Optical properties of Er-doped Si-based media. Dissertation

  37. Zheng J, Zhou C, Yu M, Liu J (2012) Different sized luminescent gold nanoparticles. Nanoscale 4:4073–4083

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Strategic Project PEst-C/CTM/LA0025/2011, project PTDC/CTM/099719/2008 and the colleagues Joana Vaz Pinto and Luis Pereira for the XRD and SEM measurements. M. J. Mendes also acknowledges funding from the EU FP7 Marie Curie Action (FP7-PEOPLE-2010-ITN) through the PROPHET project (Grant No. 264687).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaspar, D., Pimentel, A.C., Mendes, M.J. et al. Ag and Sn Nanoparticles to Enhance the Near-Infrared Absorbance of a-Si:H Thin Films. Plasmonics 9, 1015–1023 (2014). https://doi.org/10.1007/s11468-014-9709-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9709-0

Keywords

JEL classification

Navigation