Log in

Influence of thermal effects on atomic Bloch oscillation

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Advancements in the experimental toolbox of cold atoms have enabled the meticulous control of atomic Bloch oscillation (BO) within optical lattices, thereby enhancing the capabilities of gravity interferometers. This work delves into the impact of thermal effects on Bloch oscillation in 1D accelerated optical lattices aligned with gravity by varying the system’s initial temperature. Through the application of Raman cooling, we effectively reduce the longitudinal thermal effect, stabilizing the longitudinal coherence length over the timescale of its lifetime. The atomic losses over multiple Bloch periods are measured, which are primarily attributed to transverse excitation. Furthermore, we identify two distinct inverse scaling behaviors in the oscillation lifetime scaled by the corresponding density with respect to temperatures, implying diverse equilibrium processes within or outside the Bose–Einstein condensate (BEC) regime. The competition between the system’s coherence and atomic density leads to a relatively smooth variation in the actual lifetime versus temperature. Our findings provide valuable insights into the interaction between thermal effects and BO, offering avenues for the refinement of quantum measurement technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bloch, Über die quantenmechanik der elektronen in kristallgittern, Eur. Phys. J. A 52(7–8), 555 (1929)

    Google Scholar 

  2. C. Zener, A theory of the electrical breakdown of solid dielectrics, Proc. R. Soc. Lond. A 145(855), 523 (1934)

    Article  ADS  Google Scholar 

  3. M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Bloch oscillations of atoms in an optical potential, Phys. Rev. Lett. 76(24), 4508 (1996)

    Article  ADS  Google Scholar 

  4. E. Peik, M. Ben Dahan, I. Bouchoule, Y. Castin, and C. Salomon, Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams, Phys. Rev. A 55(4), 2989 (1997)

    Article  ADS  Google Scholar 

  5. O. Morsch, J. H. Müller, M. Cristiani, D. Ciampini, and E. Arimondo, Bloch oscillations and mean-field effects of Bose–Einstein condensates in 1D optical lattices, Phys. Rev. Lett. 87(14), 140402 (2001)

    Article  ADS  Google Scholar 

  6. T. Hartmann, F. Keck, H. J. Korsch, and S. Mossmann, Dynamics of Bloch oscillations, New J. Phys. 6, 2 (2004)

    Article  ADS  Google Scholar 

  7. M. Gustavsson, E. Haller, M. J. Mark, J. G. Danzl, G. Rojas-Kopeinig, and H. C. Nägerl, Control of interaction-induced dephasing of Bloch oscillations, Phys. Rev. Lett. 100(8), 080404 (2008)

    Article  ADS  Google Scholar 

  8. D. I. Choi and Q. Niu, Bose–Einstein condensates in an optical lattice, Phys. Rev. Lett. 82(10), 2022 (1999)

    Article  ADS  Google Scholar 

  9. M. Raizen, C. Salomon, and Q. Niu, New light on quantum transport, Phys. Today 50(7), 30 (1997)

    Article  Google Scholar 

  10. T. Pertsch, P. Dannberg, W. Elflein, A. Braüer, and F. Lederer, Optical Bloch oscillations in temperature tuned waveguide arrays, Phys. Rev. Lett. 83, 4752 (1999)

    Article  ADS  Google Scholar 

  11. R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, Experimental observation of linear and nonlinear optical Bloch oscillations, Phys. Rev. Lett. 83(23), 4756 (1999)

    Article  ADS  Google Scholar 

  12. Z. Zhang, S. Ning, H. Zhong, M. R. Belić, Y. Zhang, Y. Feng, S. Liang, Y. Zhang, and M. **ao, Experimental demonstration of optical Bloch oscillation in electromagnetically induced photonic lattices, Fundamental Research 2(3), 401 (2022)

    Article  Google Scholar 

  13. V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova, and B. Gil, Photon Bloch oscillations in porous silicon optical superlattices, Phys. Rev. Lett. 92(9), 097401 (2004)

    Article  ADS  Google Scholar 

  14. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose–Einstein condensation in a dilute atomic vapor, Science 269(5221), 198 (1995)

    Article  ADS  Google Scholar 

  15. K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Bose–Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75(22), 3969 (1995)

    Article  ADS  Google Scholar 

  16. M. Kasevich and S. Chu, Laser cooling below a photon recoil with three-level atoms, Phys. Rev. Lett. 69(12), 1741 (1992)

    Article  ADS  Google Scholar 

  17. J. Reichel, F. Bardou, M. B. Dahan, E. Peik, S. Rand, C. Salomon, and C. Cohen-Tannoudji, Raman cooling of cesium below 3 nK: New approach inspired by Lévy flight statistics, Phys. Rev. Lett. 75(25), 4575 (1995)

    Article  ADS  Google Scholar 

  18. V. Boyer, L. J. Lising, S. L. Rolston, and W. D. Phillips, Deeply subrecoil two-dimensional Raman cooling, Phys. Rev. A 70(4), 043405 (2004)

    Article  ADS  Google Scholar 

  19. G. Modugno, E. de Mirandés, F. Ferlaino, H. Ott, G. Roati, and M. Inguscio, Atom interferometry in a vertical optical lattice, Fortschr. Phys. 52(11–12), 1173 (2004)

    Article  Google Scholar 

  20. G. Roati, E. de Mirandes, F. Ferlaino, H. Ott, G. Modugno, and M. Inguscio, Atom interferometry with trapped Fermi gases, Phys. Rev. Lett. 92(23), 230402 (2004)

    Article  ADS  Google Scholar 

  21. G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale, Phys. Rev. Lett. 97(6), 060402 (2006)

    Article  ADS  Google Scholar 

  22. V. Xu, M. Jaffe, C. D. Panda, S. L. Kristensen, L. W. Clark, and H. Müller, Probing gravity by holding atoms for 20 seconds, Science 366(6466), 745 (2019)

    Article  ADS  Google Scholar 

  23. P. Cladé, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, and F. Biraben, A promising method for the measurement of the local acceleration of gravity using Bloch oscillations of ultracold atoms in a vertical standing wave, Europhys. Lett. 71(5), 730 (2005)

    Article  ADS  Google Scholar 

  24. N. Poli, F. Y. Wang, M. G. Tarallo, A. Alberti, M. Prevedelli, and G. M. Tino, Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter, Phys. Rev. Lett. 106(3), 038501 (2011)

    Article  ADS  Google Scholar 

  25. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. Tino, Precision measurement of the Newtonian gravitational constant using cold atoms, Nature 510(7506), 518 (2014)

    Article  ADS  Google Scholar 

  26. G. M. Tino, Testing gravity with cold atom interferometry: Results and prospects, Quantum Sci. Technol. 6(2), 024014 (2021)

    Article  ADS  Google Scholar 

  27. J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, Atom interferometer measurement of the Newtonian constant of gravity, Science 315(5808), 74 (2007)

    Article  ADS  Google Scholar 

  28. G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, Measurement of the gravity-field curvature by atom interferometry, Phys. Rev. Lett. 114(1), 013001 (2015)

    Article  ADS  Google Scholar 

  29. P. Cladé, E. de Mirandes, M. Cadoret, S. Guellati-Khélifa, C. Schwob, F. Nez, L. Julien, and F. Biraben, Precise measurement of h/mRb using Bloch oscillations in a vertical optical lattice: Determination of the fine-structure constant, Phys. Rev. A 74, 052109 (2006)

    Article  ADS  Google Scholar 

  30. R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, Measurement of the fine-structure constant as a test of the Standard Model, Science 360(6385), 191 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. M. G. Tarallo, T. Mazzoni, N. Poli, D. V. Sutyrin, X. Zhang, and G. M. Tino, Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: Search for spin–gravity coupling effects, Phys. Rev. Lett. 113(2), 023005 (2014)

    Article  ADS  Google Scholar 

  32. X. Guo, Z. Yu, F. Wei, S. **, X. Chen, X. Li, X. Zhang, and X. Zhou, Quantum precision measurement of two-dimensional forces with 10–28-Newton stability, Sci. Bull. (Bei**g) 67(22), 2291 (2022)

    Article  ADS  Google Scholar 

  33. K. Berg-Sørensen and K. Mølmer, Bose–Einstein condensates in spatially periodic potentials, Phys. Rev. A 58(2), 1480 (1998)

    Article  ADS  Google Scholar 

  34. J. H. Denschlag, J. E. Simsarian, H. Häffner, C. McKenzie, A. Browaeys, D. Cho, K. Helmerson, S. L. Rolston, and W. D. Phillips, A Bose–Einstein condensate in an optical lattice, J. Phys. At. Mol. Opt. Phys. 35(14), 3095 (2002)

    Article  ADS  Google Scholar 

  35. Z. Yu, J. Tian, P. Peng, D. Mao, X. Chen, and X. Zhou, Transport of ultracold atoms in superpositions of S- and D-band states in a moving optical lattice, Phys. Rev. A 107(2), 023303 (2023)

    Article  ADS  Google Scholar 

  36. G. Yin, L. Kong, Z. Yu, J. Tian, X. Chen, and X. Zhou, Time bound of atomic adiabatic evolution in an accelerated optical lattice, Phys. Rev. A 108(3), 033310 (2023)

    Article  ADS  Google Scholar 

  37. M. Andia, R. Jannin, F. c. Nez, F. c. Biraben, S. Guellati-Khélifa, and P. Cladé, Compact atomic gravimeter based on a pulsed and accelerated optical lattice, Phys. Rev. A 88, 031605 (2013)

    Article  ADS  Google Scholar 

  38. P. Cladé, Bloch oscillations in atom interferometry, Riv. Nuovo Cim. 38, 173 (2015)

    ADS  Google Scholar 

  39. R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, Local gravity measurement with the combination of atom interferometry and Bloch oscillations, Phys. Rev. A 85(1), 013639 (2012)

    Article  ADS  Google Scholar 

  40. R. Bouchendira, Thèse de doctorat, Université Pierre et Marie Curie, Paris (2012), soutenue publiquement le 17 Juillet 2012

    Google Scholar 

  41. M. Andia, Thèse de doctorat, Université Pierre et Marie Curie, Paris (2015), soutenue le 25 Septembre 2015

    Google Scholar 

  42. S. Choudhury and E. J. Mueller, Transverse collisional instabilities of a Bose–Einstein condensate in a driven one-dimensional lattice, Phys. Rev. A 91(2), 023624 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Z. Yu and L. Kong for useful discussions. This work was supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA0718300 and 2021YFA1400900), the National Natural Science Foundation of China (Grant Nos. 11920101004, 11934002, and 92365208), the Science and Technology Major Project of Shanxi (Grant No. 202101030201022), and the Space Application System of China Manned Space Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoji Zhou.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, G., Lai, CK., Chang, N. et al. Influence of thermal effects on atomic Bloch oscillation. Front. Phys. 19, 62201 (2024). https://doi.org/10.1007/s11467-024-1420-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-024-1420-9

Keywords

Navigation