Log in

Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Solving non-Hermitian quantum many-body systems on a quantum computer by minimizing the variational energy is challenging as the energy can be complex. Here, we propose a variational quantum algorithm for solving the non-Hermitian Hamiltonian by minimizing a type of energy variance, where zero variance can naturally determine the eigenvalues and the associated left and right eigenstates. Moreover, the energy is set as a parameter in the cost function and can be tuned to scan the whole spectrum efficiently by using a two-step optimization scheme. Through numerical simulations, we demonstrate the algorithm for preparing the left and right eigenstates, verifying the biorthogonal relations, as well as evaluating the observables. We also investigate the impact of quantum noise on our algorithm and show that its performance can be largely improved using error mitigation techniques. Therefore, our work suggests an avenue for solving non-Hermitian quantum many-body systems with variational quantum algorithms on near-term noisy quantum computers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv. Phys. 69(3), 249 (2020)

    Article  ADS  Google Scholar 

  2. A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Observation of PT-symmetry breaking in complex optical potentials, Phys. Rev. Lett. 103(9), 093902 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70(6), 947 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. P. Dorey, C. Dunning, and R. Tateo, Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics, J. Phys. Math. Gen. 34(28), 5679 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  5. Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Parity–time symmetry and exceptional points in photonics, Nat. Mater. 18, 783 (2019)

    Article  ADS  PubMed  Google Scholar 

  6. S. Yao and Z. Wang, Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121(8), 086803 (2018)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  7. Z. Wang, L. J. Lang, and L. He, Emergent Mott insulators and non-Hermitian conservation laws in an interacting bosonic chain with noninteger filling and nonreciprocal hop**, Phys. Rev. B 105(5), 054315 (2022)

    Article  ADS  CAS  Google Scholar 

  8. H. Jiang, L. J. Lang, C. Yang, S. L. Zhu, and S. Chen, Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices, Phys. Rev. B 100(5), 054301 (2019)

    Article  ADS  CAS  Google Scholar 

  9. L. J. Lang, X. Cai, and S. Chen, Edge states and topological phases in one-dimensional optical superlattices, Phys. Rev. Lett. 108(22), 220401 (2012)

    Article  ADS  PubMed  Google Scholar 

  10. D. W. Zhang, L. Z. Tang, L. J. Lang, H. Yan, and S. L. Zhu, Non-Hermitian topological Anderson insulators, Sci. China Phys. Mech. Astron. 63(6), 267062 (2020)

    Article  ADS  Google Scholar 

  11. L. Z. Tang, G. Q. Zhang, L. F. Zhang, and D. W. Zhang, Localization and topological transitions in non-Hermitian quasiperiodic lattices, Phys. Rev. A 103(3), 033325 (2021)

    Article  ADS  CAS  Google Scholar 

  12. L. Z. Tang, L. F. Zhang, G. Q. Zhang, and D. W. Zhang, Topological Anderson insulators in two-dimensional non-Hermitian disordered systems, Phys. Rev. A 101(6), 063612 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. W. Heiss, Exceptional points of non-Hermitian operators, J. Phys. Math. Gen. 37(6), 2455 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. F. Song, S. Yao, and Z. Wang, Non-Hermitian skin effect and chiral dam** in open quantum systems, Phys. Rev. Lett. 123(17), 170401 (2019)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  15. J. Feinberg and A. Zee, Non-Hermitian localization and delocalization, Phys. Rev. E 59(6), 6433 (1999)

    Article  ADS  CAS  Google Scholar 

  16. A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F. Huelga, Quantum speed limits in open system dynamics, Phys. Rev. Lett. 110(5), 050403 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. F. Barahona, On the computational complexity of Ising spin glass models, J. Phys. Math. Gen. 15(10), 3241 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  18. G. Chen, F. Song, and J. L. Lado, Topological spin excitations in non-Hermitian spin chains with a generalized kernel polynomial algorithm, Phys. Rev. Lett. 130(10), 100401 (2023)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  19. D. Jaschke, S. Montangero, and L. D. Carr, One-dimensional many-body entangled open quantum systems with tensor network methods, Quantum Sci. Technol. 4(1), 013001 (2018)

    Article  ADS  Google Scholar 

  20. M. T. Fishman, L. Vanderstraeten, V. Zauner-Stauber, J. Haegeman, and F. Verstraete, Faster methods for contracting infinite two-dimensional tensor networks, Phys. Rev. B 98(23), 235148 (2018)

    Article  ADS  CAS  Google Scholar 

  21. R. Orús, A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Ann. Phys. 349, 117 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Wiesner, Simulations of many-body quantum systems by a quantum computer, ar**v: quant-ph/9603028 (1996)

  23. D. Poulin and P. Wocjan, Preparing ground states of quantum many-body systems on a quantum computer, Phys. Rev. Lett. 102(13), 130503 (2009)

    Article  ADS  PubMed  Google Scholar 

  24. D. S. Abrams and S. Lloyd, Simulation of many-body Fermi systems on a universal quantum computer, Phys. Rev. Lett. 79(13), 2586 (1997)

    Article  ADS  CAS  Google Scholar 

  25. A. Smith, M. Kim, F. Pollmann, and J. Knolle, Simulating quantum many-body dynamics on a current digital quantum computer, npj Quantum Inf. 5, 106 (2019)

    Article  ADS  Google Scholar 

  26. A. Peruzzo, J. McClean, P. Shadbolt, M. H. Yung, X. Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, A variational eigenvalue solver on a photonic quantum processor, Nat. Commun. 5(1), 4213 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets, Nature 549(7671), 242 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, G. H. Booth, and J. Tennyson, The variational quantum eigensolver: A review of methods and best practices, Phys. Rep. 986, 1 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  29. D. A. Fedorov, B. Peng, N. Govind, and Y. Alexeev, VQE method: A short survey and recent developments, Mater. Theory 6(1), 2 (2022)

    Article  ADS  Google Scholar 

  30. P. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis, Scalable quantum simulation of molecular energies, Phys. Rev. X 6(3), 031007 (2016)

    Google Scholar 

  31. J. L. Bosse and A. Montanaro, Probing ground-state properties of the kagome antiferromagnetic Heisenberg model using the variational quantum eigensolver, Phys. Rev. B 105(9), 094409 (2022)

    Article  ADS  CAS  Google Scholar 

  32. J. Kattemölle and J. van Wezel, Variational quantum eigensolver for the Heisenberg antiferromagnet on the kagome lattice, Phys. Rev. B 106(21), 214429 (2022)

    Article  ADS  Google Scholar 

  33. K. M. Nakanishi, K. Mitarai, and K. Fujii, Subspace-search variational quantum eigensolver for excited states, Phys. Rev. Res. 1(3), 033062 (2019)

    Article  CAS  Google Scholar 

  34. O. Higgott, D. Wang, and S. Brierley, Variational quantum computation of excited states, Quantum 3, 156 (2019)

    Article  Google Scholar 

  35. S. Liu, S. X. Zhang, C. Y. Hsieh, S. Zhang, and H. Yao, Probing many-body localization by excited-state variational quantum eigensolver, Phys. Rev. B 107(2), 024204 (2023)

    Article  ADS  CAS  Google Scholar 

  36. Q. X. **e, S. Liu, and Y. Zhao, Orthogonal state reduction variational eigensolver for the excited-state calculations on quantum computers, J. Chem. Theory Comput. 18(6), 3737 (2022)

    Article  CAS  PubMed  Google Scholar 

  37. D. B. Zhang, B. L. Chen, Z. H. Yuan, and T. Yin, Variational quantum eigensolvers by variance minimization, Chin. Phys. B 31(12), 120301 (2022)

    Article  ADS  Google Scholar 

  38. B. L. Chen and D. B. Zhang, Variational quantum eigensolver with mutual variance-Hamiltonian optimization, Chin. Phys. Lett. 40(1), 010303 (2023)

    Article  ADS  Google Scholar 

  39. Z. Guo, Z. T. Xu, M. Li, L. You, and S. Yang, Variational matrix product state approach for non-Hermitian system based on a companion Hermitian Hamiltonian, ar**v: 2210.14858 (2022)

  40. N. Moiseyev, Non-Hermitian Quantum Mechanics, Cambridge: Cambridge University Press, 2011

    Book  Google Scholar 

  41. S. Banach, Theory of Linear Operations, Elsevier, 1987

  42. M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, Variational quantum algorithms, Nat. Rev. Phys. 3(9), 625 (2021)

    Article  Google Scholar 

  43. R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Quantum algorithms revisited, Proc. Royal Soc. A 454(1969), 339 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  44. K. Bharti and T. Haug, Quantum-assisted simulator, Phys. Rev. A 104(4), 042418 (2021)

    Article  ADS  CAS  Google Scholar 

  45. S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-Salinas, D. García-Martín, A. Garcia-Saez, J. I. Latorre, and S. Carrazza, Qibo: A framework for quantum simulation with hardware acceleration, Quantum Sci. Technol. 7(1), 015018 (2022)

    Article  ADS  Google Scholar 

  46. J. R. Johansson, P. D. Nation, and F. Nori, QuTiP: An open-source Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 183(8), 1760 (2012)

    Article  ADS  CAS  Google Scholar 

  47. G. Gehlen, Critical and off-critical conformal analysis of the Ising quantum chain in an imaginary field, J. Phys. Math. Gen. 24(22), 5371 (1991)

    Article  ADS  Google Scholar 

  48. P. B. Sousa and R. V. Ramos, Universal quantum circuit for n-qubit quantum gate: A programmable quantum gate, ar**v: quant-ph/0602174 (2006)

  49. X. D. **e, X. Guo, H. **ng, Z. Y. Xue, D. B. Zhang, and S. L. Zhu, Variational thermal quantum simulation of the lattice Schwinger model, Phys. Rev. D 106(5), 054509 (2022)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  50. T. Haug, K. Bharti, and M. Kim, Capacity and quantum geometry of parametrized quantum circuits, RRX Quantum 2(4), 040309 (2021)

    Article  ADS  Google Scholar 

  51. J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018)

    Article  Google Scholar 

  52. L. F. Richardson and J. A. Gaunt, VIII. The deferred approach to the limit, Philos. Trans. Royal Soc. Ser. A 226(636–646), 299 (1927)

    ADS  Google Scholar 

  53. K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119(18), 180509 (2017)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12375013 and 12275090), the Guangdong Basic and Applied Basic Research Fund (Grant No. 2023A1515011460), and the Guangdong Provincial Key Laboratory (Grant No. 2020B1212060066).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-Yuan Xue or Dan-Bo Zhang.

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, XD., Xue, ZY. & Zhang, DB. Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems. Front. Phys. 19, 41202 (2024). https://doi.org/10.1007/s11467-023-1382-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1382-3

Keywords

Navigation